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so thatX^w- \Am(f, 0) | = oo. It remains to show that f(x) c L which 
is easily seen since 

f ' i ƒ ( * ) ! < * * = L 2 - < r \fni(%)\dx 

g £ 2~%n + 1) * < - . 
.-o 3(» + 1) 

We notice that , since this function vanishes in the neighborhood 
of the origin, it coincides with a function having an absolutely sum-
mable Fourier series in the neighborhood of the origin, and therefore 
absolute summability C(l) is not a local property. 
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1. Introduction. We shall say that F is a form in r essential variables 
with respect to a field K if F cannot be brought by means of a non-
singular linear transformation in the field K to a form with less varia
bles. Let F be a form of degree p written as aij...kXiX3- • • • xk, 
(iy 3, ' ' ' y k = l, 2, • • • , n). We arrange the coefficients of F in a 
matrix A whose nv~x columns are of the form 

1 CL\j> 

a>2j. 

l an j . 

-k 1 

>k 

• >k \ 

The index i is associated with the rows of A and the p — 1 indices 
j , • • • , k are associated with the columns of A. We assume that the 
coefficients in F are so chosen that A is symmetric in the sense that 
the value of an element a»-,-... h is unchanged under permutation of the 
subscripts. I t can be shown2 that F is a form in r essential variables if 
and only if the rank of A is r. 

A form F is said to be completely reducible in a field K if F splits 
1 Presented to the Society, April 7, 1939. 
2 Oldenburger, Composition and rank of n-way matrices and multilinear forms, 

Annals of Mathematics, (2), vol. 35 (1934), pp. 622-653. 
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in K into a product of linear factors. Hocevar proved3 that a form 
F with no repeated factors is completely reducible in the complex field 
if and only if F divides each third order minor of its Hessian. It is 
obvious that this result of Hocevar is not valid for each field of num
bers. A form F of degree p is said to be nonsingular with respect to K 
if F can be written as a linear combination of pth. powers of linearly 
independent linear forms with coefficients in K. Elsewhere the author 
proved4 that the Hessian of a cubic form nonsingular with respect to 
K factors in K into linearly independent factors. For a field K with 
characteristic different from 2, 3, and element a5*0, the product 
axiX2 • - - xn in n independent variables X\y X%f , Xl% l ö the Hessian 
of the nonsingular cubic C(a) where 6C(a) = axiz +x£ + • • • +# n

3 . 
We let Li^bijjj, (i, j= 1, 2, • • • , n), denote an arbitrary set of n 
linear forms linearly independent with respect to K. We write A for 
the determinant of the matrix (&»-,-). Applying the nonsingular linear 
transformation xi = Li, x2 = Z/2, • • • , xn = Ln to C(l/A2) we obtain a 
form whose Hessian is L1L2 • • • Ln. Hence each product of linearly 
independent linear forms is the Hessian of a nonsingular cubic form. 
We have proved the theorem which follows. 

THEOREM 1. Let K be afield with characteristic not 2 or 3. A form F 
of degree n in n essential variables is completely reducible in K if and 
only if F can be ivritten as the Hessian of a cubic form nonsingular with 
respect to K. 

If F of Theorem 1 is completely reducible and F is the Hessian of a 
nonsingular cubic form C, then C = aiLiz, ( i = l , 2, • • • , n), and the 
linear forms L\t • • • , Ln are the factors of F. 

The utility of Theorem 1 is limited by the fact that the problem 
of representability of a form as the Hessian of a nonsingular cubic is 
unsolved. In the present paper we prove that a certain integer, called 
"minimal number," associated with a completely reducible form 7̂  of 
degree n is not greater than 2n~1. From this property we obtain a 
solution of the problem of complete reducibility of cubic forms for a field 
K with characteristic not 2 or 3. 

2. Minimal numbers and representations. Elsewhere5 the author 
proved that each symmetric form F of degree p can be written for a 

3 Hoëevar, Sur les f ormes dêcomposables en facteurs linéaires, Comptes Rendus de 
l'Académie des Sciences, vol. 138 (1904), pp. 745-747. 

4 Oldenburger, Rational equivalence of a form to a sum of pth powers, Trans
actions of this Society, vol. 44 (1938), pp. 219-249; in particular p. 233. 

5 Oldenburger, Representation and equivalence of forms, Proceedings of the 
National Academy of Sciences, vol. 24 (1938), pp. 193-198. 
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field K of order p or more as a linear combination of pth powers of 
linear forms. Such a linear combination with p terms we call a p-repre-
sentation of F with respect to K. A representation of F with respect 
to K with a minimum number of terms is called a minimal représenta-
tion of F with respect to K. The number of terms in such a represen
tation we term the minimal number of F with respect to K, and denote 
this number by m(F). 

THEOREM 2. Let K be a field with characteristic* greater than n, and 
let F be a form of degree n completely reducible in K. Then m{F) ^ 2 n " 1 . 

We write p = 2 n _ 1 . Let Lh L2, • • • , Lp denote the different possible 
forms of the type (xi±X2±Xs± • • • ±xn). Let ki — + 1 if Li contains 
an even number of minus coefficients, and ki = —• 1 if Li contains an 
odd number of such coefficients. We consider the sum 

Simple computation reveals that (1) is symmetric in the x's. We con
sider a product 11= ±xf • • • xr

d of degree n with r<n arising from 
the expansion of a term kiLf1 in (1). Corresponding to the linear 
form Li there is a unique form Lj, ( jVi) , in (1) obtainable from 
Li by changing the sign of xn in Li. Then kj = —ki. The product 
P = Xia • • • xr

d arising from k3Ljn has a coefficient the negative of that 
in II. Thus the terms involving the product P , where these terms arise 
from kiL? and kjLf > vanish. It follows that the coefficient of P in (1) 
is zero. It is obvious from the choice of the ki that the coefficient of 
xi • • • xn in (1) is n\, whence (1) is a p-representation of n\x\ • • • xn. 
Since a completely reducible form F in n essential variables is equiva
lent to this product under nonsingular linear transformations in K, 
and the minimal number is an invariant of F, we have m{F) S 2n~1. It 
follows that if F = LiL2 • • • Ln where Lu L2, • • • , Ln are linearly de-
dependent linear forms, m{F) ^ 2 n _ 1 . 

3. Complete reducibility of cubic forms. In the present section we 
assume that the underlying field K is such that when two forms are 
equal to each other for all values of the variables in K, corresponding 
coefficients of these forms are equal. In the case of cubic forms this 
means that the characteristic of K is different from 2, 3. Evidently, 
a completely reducible cubic form is a form in not more than 3 essential 
variables. Since the minimal number of a binary cubic is not greater 

6 Restricting the characteristic of K to be greater than n is equivalent to assuming 
that the characteristic of K does not divide n\. 
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than 3, the theory of complete reducibility of binary forms may read
ily be supplied by the reader. In what follows we therefore consider 
cubic forms in 3 essential variables only. 

THEOREM 3. A cubic form F in 3 essential variables is completely re
ducible with respect to a field K if and only if 

(a) The minimal number of F with respect to K is 4. 
(b) If iJLiRi* is a minimal representation of F with respect to K, then 

roots (Ti = (Mt/Mi)1/3 o,re in Kfor each i, and for some choice of the roots 
o*i we have X ^ K T A = 0. 

A completely reducible cubic form F in 3 essential variables is 
equivalent under nonsingular linear transformations in the given field 
to T = xyz. By Theorem 2, w ( T ) ^ 4 . If m{T) were 3, the form T 
would be equivalent to C = atiz+bvz+cwz in the variables u, v, w, 
whence T is nonsingular. For T to be nonsingular it is necessary and 
sufficient7 that the Hessian H of T split into linearly independent 
linear factors Ly M, and N and under reduction of H to canonical 
form uvw, T transform covariantly to a reduced form C. Since the 
Hessian of T is already in canonical form and T^axz+byz+czz

y we 
have m(T) 9*3. The minimal number of a form cannot be less than 
the number of essential variables in the form, whence m(T) =4 . Hence 
m ( F ) = 4 . 

It is easy to prove that if ^L iXi (x+a<y) n = 0, where the X's are not 
zero, and r^n+1, the a's can be grouped into sets Si, S2, • • • , Sp 

each of order 2 at least, where the a's in each set are equal; and if we 
let X»- correspond to at-, the sum of the X's corresponding to the a's 
in Si vanishes for each i in the range 1,2, • • • , p. From this it follows 
rather immediately that if 

4 

(2) 6xyz = X **(* + «.-y + ft*)3, 
t= i 

the right member of (2) is 

(l/4a6) {O + ay + bz)z — (x + ay — bz)z 

— (x — ay + bz)z + (x —• ay — bz)z}. 

It is readily verified that the coefficients of x, y, and z in a representa
tion X»-L»8, (i — 1, 2, 3, 4), of 6xyz are different from zero, whence any 
representation of 6xyz can be written as the right member of (2). 
Thus each representation of 6xyz is of the type (3), and (3) is a repre-

7 Oldenburger, Rational equivalence of a form to a sum of pth powers, Trans
actions of this Society, vol. 44 (1938), pp. 219-249. 
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sentation of 6xyz for each choice of a, b not zero. Since the repre
sentations of each form equivalent to 6xyz under nonsingular 
transformations can be obtained from 6xyz by substitutions x=L, 
y = M, z = N where Ly M, N are linearly independent linear forms, a 
cubic form F in 3 essential variables is completely reducible if and only 
if each ^-representation of F is of the type 

k{(L + aM + bN)z - (L+ aM - bN)* 

- (Z, - aM + bN)z +(L-aM- bN)z}, 

where ky a, b^O, and L, M, N are linearly independent. 
Let a cubic form F in three essential variable be given by a minimal 

representation ^»--I/A*J?^. If F is completely reducible, the forms 
fXiRt* (i not summed; i = 1, 2, 3, 4) are identically equal to the forms 
±k[L±aM±bN]z in some order and for some choice of k, a, b, L, M, 
and N. Then there exists an element c in the given field K such that 
P»,=s (^M*)1/3 a r e m K-i a n d a n ordering of the values of i so that 

L + aM + bN s PlRly L + aM - bN s - p2£2, 

Z, - aM + &# s - PsR3, L - aM - bN = p4-K4. 

Equations (5) are solvable for Z,, M, N if and only if 2j<-ip<2?<s=0. 
Evidently there exists an element c in K so that roots pi in if exist 
if and only if there exist roots 0"* = (/^/jui)1/3 in K. Theorem 3 is now 
proved. 
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