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ôn+i are to be chosen independently of ôw+2, Sw+3, • • • in such manner 
that the conjugate of the point wn with respect to R lies exterior to 
the circle \w\ = 2 n + 1 ; each Sw (for n> 1) is subjected then to two con
ditions, and the numbers 8n can be determined in succession. The 
resulting region R is a Jordan region. The sequence wn approaches the 
boundary point w = 3 of R, and the conjugate of wn with respect to R 
becomes infinite with n. Theorem 3 is established. 
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Let f(x) be a Lebesgue integrable function, and denote the partial 
sums of its Fourier series by sn(f\ x). It is well known that sn = o(n) 
uniformly2 in x. Recently W. C. Randels3 gave an example showing 
that this estimate cannot be improved. The same conclusion can be 
drawn from a note by E. C. Titchmarsh;4 and A. Zygmund in his 
review of Randels' article (Zentralblatt für Mathematik, vol. 18, p. 
353) pointed to another device, using convex coefficient sequences, 
which would establish the same fact. 

In this note a simple construction is given, using a sequence of 
polynomials in the complex variable z. This leads to a sharper result 
showing that even for Fourier power series (that is, a power series 
considered on its circle of convergence and integrable) the estimate 
cannot be improved. Moreover, an example F(z) ==^Lin=ocnZn is given 
which has the additional property that F(z)/(l—z) is a generalized 
Fourier power series on \z\ = 1. 

We start with a sequence of polynomials of increasing degree 
Pn(?) = (£?~oCnvZv)2 =Ylï™oanVzv having the following properties: 

1 /•» T m 

(1) — I | Pn(e") U* = £ I c„, |2 = 1, 
2w J _*• „«o 

1 Presented to the Society, April 15, 1939. 
2 In fact, if Co, Cu • • • are the Fourier coefficients, then cn-»0. H e n c e ^ o l CA —o(n). 
3 W. C. Randels, On the order of the partial sums of a Fourier series, this Bulletin, 

vol. 44 (1938), pp. 286-288. 
4 E. C. Titchmarsh, Principal value Fourier series, Proceedings of the London 

Mathematical Society, (2), vol. 23 (1925), pp. xli-xliii. 
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I k I 
(2) max ]>j anv\ > yn, 7 an absolute constant. 

I t is sufficient to consider two special cases,5 given in formulas (3) 
and (4) 

(3) Pn(z) = (n + I )" 1 ( è *") , » = 1, 2, • • • ; m = n. 

In this case]£X 0 | cn„| 2 = 1, X)îioanr = -Pn(l) = » + l i and 7 = 1 ; 

(4) Pn(z) = (2»)~1(1 - *w)4(l - *)~2, » = 1, 2, • • • ; m - 2fi - 1. 

In this case 

Pn(z) = (2#)~1{(1 - s»)2(l - s )" 1} 2 

= (2»)~1{(1 + • • • + s^Xl - zn)}2 

= (2n)~l(l + • • • + zn~l - zn - • • • - s2""1)2. 

Hence ^ ^ ö 1 1 cnv\
2 — 2n/2n = 1. Furthermore from (4) 

JPn(s) = (2^)~1(1 + 2z + • • • + nzn~l + • • • ) • 

Hence 

»z} 1 n(n+ 1) n 
T, *n, = > — ; 7 = 1/4. 
v=o 2n 2 4 

Note that in the second example P n ( l ) =0 . This property is essen
tial for the last section. 

Let di^d^dz^ • • • be an arbitrarily given monotone sequence of 
positive numbers tending to zero, and let ni<n2<nz< • • • be in
tegers such that ^ H !dnv < 00. Denote the degree of the polynomial 
Pnv(z) by 2mvi and let, for example, Ai = l, 

(5) \fc+i = 2mk + \k + 1, k = 1, 2, - • - , 

which gives 

(6) Xfc+1 = k + 1 + 2 £ > „ * = 1, 2, 3, • • • . 

I t is then clear that in the totality of polynomials z\Pnv(z)y 

6 The polynomials given in (3) have been used by F. Riesz to construct a Fourier 
power series for which lim sup»-» f1L1r\sn(eix)\dx=: 00. Cf. A. Zygmund, Proceedings 
of the London Mathematical Society, (2), vol. 34 (1932), pp. 392-400, and Zygmund, 
Trigonometrical Series, p. 165. 
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(v = l, 2, • • • ), no power of z is repeated. Hence the series of poly
nomials 

(7) F{z) = £ dnz^Pnv{z) 

with each term written out separately is a power series convergent 
for \z\ < 1 . Moreover, when 0 < r < l , 

1 S* T 1 00 /• T 00 

— I F(re") \dx^ — ^ d n l \ P„,(re««) \dx = £ dn, < °o ; 

whence F(eix) exists and is Lebesgue integrable. Note that for both 
examples the series (7) converges uniformly in any closed region on 
\z\S-\. excluding the point s = 1. Thus F(z) is continuous in that region. 

For example (3) we now have S2nk+\k (F; l ) = X X i ( l + ^ ) < . Since 
dn decreases as n increases we get, using (5) and (6), 

S2nk+\k(F; 1) ^ dnk( k + Y, nv) > (l/2)4AXfc+i 

> (l/2)dnk(2nk + \k). 

Thus 5Xfc+l-i>(l/2)(Xfc+i-l)dxfc+1-i, giving 

(9) l i m s u p — ^ 1/2, 

where dn has been chosen approaching 0 as slowly as we please. 
In the case of example (4) we consider 

S2mk+Xk+nk+l+l(F; 1) = (1/4) Jnfc+1(l + »*+l) , 

where mfc = 2w,fc — 1 . Thus 

2wfc + 1 = 4w* - 1 = Xfc+i - X*, 1 + nk+i = 1 + (Xfc+2 - Xfc+i + l ) / 4 . 

Also 2mk+\k+nk+i + l =\k+i + (\k+2— X*+i + l ) /4 . Denoting this 
number by /*&, we have ^ & > (l/4)(/Xfc— \k+i)dpk. Hence 

5MA. 1 jXk — Xfc+1 1 Xfc+2 — Xfc+1 + 1 

txkdtik 4 fjLk 4 Xfc+2 + 3Xfc+i + 1 

Assuming, as we may, X&+i/Xfc—><*>, we get 

(10) limsup — ^ 1/4. 

file:///z/S-/
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Let us rewrite the function defined by (7) as 

(7') F(z) = £ cnz\ 
n=»l 

and consider 

L 
1 

F(t)dt = £ CnZ^1 = F^z). 
0 n-1 » + 1 

^1(2;) is absolutely continuous. Thus by a theorem of Hardy and 
Littlewood6 ^ ° = i | cn\ /(n + 1) < <*>. On the other hand 

n n f n s-

„=1 Z> + 1 >-l V + 1 

(11) = fw»(F i ;l) - £ * ( F i ; l ) 

- « { j . - F x d ) } -tt(s,-F1(l)). 

It now follows that there does not exist a sequence (Sn) tending to 
zero, such that for every absolutely continuous Fourier power series 
F{z) we have sn — Fi(l) = 0(5W). For then for a positive number p de
pending on F we should have \sn — Fi(l)\ <pdni (n = l, 2, 3, • • • ), 
and hence, from (11), 

A 1 
< pnbn + p22 Ô"> — 

,=1 n 

P A 
< PK H /J 5"' 

Thus if crn = 2max (Sw, (l/w)^Liôi>)> then crn—>0, and (l/w)|XXiC?| 
<pcrw. Let now dn

2 = m a x ^ n cr„; then dn J, 0, and (l/ndn) \ sn\ <pdn [ 0, 
which contradicts the result in (9) and (10). 

Now consider again the function (7') corresponding to the example 
in (4). Then for |g | < 1 , (l-z)~lF(z) =Y,Z1snz

n
1 where s w = I X i G . 

From (7) 

(1 - S)-V(*) = £ d n ^ P n r W ( l ~ 2)"1, 

where the series converges uniformly in any closed region on \z\ ^ 1 
excluding the point 2 = 1. Now for 0 < e <TT 

6 G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, 
Mathematische Annalen, vol. 97 (1926), pp. 159-209, in particular Theorem 16, p. 
208. 
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(1 - e f a ) - W ) d * = £ <*», e°"P»,(«<")(l - e'")-1** 

1 * 1 cT 

2 v=ai nv J € 

and 

( l + I Je^x(l - ein>x)*(l - eix)~ddx—>0, e—>0. 

Thusfl^l — eix)~~lF(eix)dx exists as a generalized integral and 

I F(eix)(l - e^ ) -^x = 0. 

On the other hand Si, s2, s9, • - • are the generalized Fourier coeffi
cients of this function. Thus o(ri) is the sharpest estimate for the 
Fourier coefficients of a generalized Fourier power series. For general
ized Fourier series Titchmarsh7 constructed an example along essen
tially different lines. 

UNIVERSITY OF CINCINNATI 

7 E. C. Titchmarsh, The order of magnitude of the coefficients in a generalized 
Fourier series, Proceedings of the London Mathematical Society, (2), vol. 22 (1924), 
pp. xxv-xxvi. 


