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1. Introduction. Hurwitz proved that if co is a real irrational num
ber, then the inequality 

(1) | * > - # / ? | <k/q* 

is satisfied by infinitely many rational fractions p/q when fe^l/S1/2, 
and further, that there exist irrationals everywhere dense on the real 
axis for which (1) is satisfied by only a finite number of fractions2 

when k < 1/S1/2. He used simple continued fractions to get this result. 
The same result has since been obtained in two different ways by 
Ford.3 

If o denotes an odd integer and e an even integer, then all irreduci
ble fractions p/q are of three classes [o/e], [e/o], and [0/0]. It will 
be shown that 

If k ^ 1, there are infinitely many fractions of each of the three classes 
satisfying (1), regardless of the value of the real irrational number o). 

If k<l, there exist irrational numbers everywhere dense on the real 
axis f or which (1) is satisfied by only a finite number of f raclions of a 
given one of the three classes. 

The proof, like Ford's first proof of Hurwitz' theorem, will depend 
to a large extent on geometric properties of elliptic modular trans
formations, 

2. Proof of the first part of the theorem. For each fraction p/q 
construct (see Fig. 1), in the upper half-plane an 5-circle, S(p/q; k) 
of radius k/q2 and tangent to the real axis a t z = p/q. Let L be a line 
in the upper half-plane perpendicular to the real axis at s=co. Then 
(1) is satisfied by p/q if and only if L cuts S(p/q\ k). 

The group of elliptic modular transformations is the set of all trans
formations of the form 

az + B 
(2) *' = — , « 0 - / 5 7 = 1 , 

yz + ô 
where a, j8, 7, S are integers. These conformai transformations carry 

1 Presented to the Society, February 24, 1940. 
2 A. Hurwitz, Mathematische Annalen, vol. 39 (1891), pp. 279-285. 
8 L. R. Ford, Proceedings of the Edinburgh Mathematical Society, vol. 35 (1916), 

pp. 59-65; American Mathematical Monthly, vol. 45 (1938), pp. 586-601. 
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the upper half plane into itself and the real axis into itself. Circles 
(including straight lines) are carried into circles.4 

po/qo Pi/qi W Pt/q W Pt/qt 

FIG. 1 

P*/q* 

Consider the subgroup 

G ( s ) « 
az + 2b 

2cz + d 
ad — 4bc = 1, 

a1 b, c, d integers. I t is well known that a fraction p/q is irreducible 
if and only if there exist integers p0, q0l such that pqo — qpo = l. It fol
lows that 

G(p/q) = 
ap + 2bq 

2cp + dq 

is irreducible if p/q is, since 

(ap + 2bq)(2cp0 + dq0) - (2cp + dq)(ap0 + 2bq0) = pqQ — qp0. 

By inspection we see that G(p/q) is a fraction of the same class as 
p/q. Hence, the classes [o/e], [e/o], [o/o] are invariant under a trans
formation by any member of G(z). 

The set of S-circles of a given class is invariant under a transforma
tion by any member of G(z). 

Because of the preceding result it will suffice to show that the set 
of all circles S(p/q; k) is invariant under any modular transformation. 

Consider the horizontal line y = h, or z — z = 2ih where h is a posi
tive constant and z is the complex conjugate of 2. When the values 
of z and z given by the modular transformation (2) are substituted 
in this equation, it is found that the line is carried into S(a/y; l/2h). 
Now choose h = l/2k and define 5(1 /0 ; k) to be the line y = h. The 
desired result is immediate. 

4 A detailed account of the elliptic modular group can be found in the early 
chapters of L. R. Ford, Automorphic Functions, 1929, New York. 
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There is a member of G{z) which carries S(p/q; k) into any prescribed 
S-circle of the same class. 

Let p/q be a fraction of class [o/e]. There exist integers po, qo, such 
that pq0 — qpo = 1 ; and the transformation 

- (go + nq)z + Oo + np) 
z = 

qz- p 
carries z — p/q into z' = oo. Since p is odd and q is even, the integer n 
can be chosen so that this transformation is a member of G{z). Simi
larly, there exists a member of G{z) which carries the prescribed frac
tion of class [o/e] into s' = 00. The first transformation followed by 
the inverse of the second transformation is a member of G(z) since 
G(z) is a group, and it is easily seen that this transformation has the 
desired properties. 

The classes [e/o] and [0/0] are similarly treated, except that the 
zf = 00 should be replaced by z' — 0 and z' = 1. 

A simple calculation shows that S(p/q; k) and S(p'/q'; k) are tan
gent if and only if 

** = (l/4)(*ç' - qp')\ 

If p/q and p'/q' are different fractions of the same class and k = 1, the 
condition for tangency becomes 

pq' -qp' = ± 2 . 

Hence, when fe = l, two circles of the same class are either tangent or 
else wholly external to each other. 

We note that the circles S(l/2n; 1) are tangent for consecutive in
tegral values of n ; and the same is true for the circles S{ \ln — 1 ]/2n ; 1). 
Even when 5(1 /0 ; 1) is excluded these two sets of circles still have a 
common member; namely, 5(1 /2 ; 1). These two sets of circles form 
a chain which extends from —1/2 to 3/2, except for breaks at 0 and 1 
(see Fig. 2). We apply z'=z-\-2b> which are members of G(s), and 
see that there is a chain of tangent S-circles of class [o/e] between every 
pair of consecutive integral points when k = 1. 

The modular transformations 

z' = - 1/z', z' = - z/(z - 1) 

interchange the classes [o/e], [e/o], and the classes [o/e], [0/0]. The 
chain property for class [o/e] has an analogue for the two remaining 
classes. Only fractions of the class [o/e] will be treated here, but 
similar treatment would yield like results for the other two classes. 



1940] APPROXIMATION TO REAL IRRATIONALS 127 

The line L must cut 5 (1 /0 ; 1). As L is traced toward z = oo, an 
5-circle of a chain between two integral points must be encountered 
since co is irrational. This 5-circle is now transformed into 5(1/0; 1) 
by a suitable member of G(z) ; and this same transformation carries L 
into a semicircle, one of whose ends is at an irrational point. As the 
semicircle is traced from its intersection with 5(1 /0 ; 1) toward its 
irrational end an 5-circle of a chain between two integral points must 
be encountered. This 5-circle is not one which has been encountered 
before. I t is now transformed into 5(1 /0 ; 1) by a suitable member of 
G(z) and the procedure is continued. The process cannot terminate; 

n A A 4 1 
U 4 2 4 L 

FIG. 2 

for otherwise some transform of z = w by a member of G(z) would be 
rational, and this is not possible. This shows that L cuts infinitely 
many S-circles of class [o/e] when k = l. 

3. Proof of the second part of the theorem. We shall show that 
there exist irrational numbers for which the inequality (1) is satisfied 
by only a finite number of fractions of class [0/0] when k<l. The 
geometric properties used to show this are preserved by the modular 
transformations and hence this result will be valid for the other two 
classes. The proof will then be complete since the transforms of any 
point on the real axis by G(z) are everywhere dense on the real axis. 

Let Kn be a semicircle with center at z — — n, where n is a positive 
integer, and tangent to 5( — 1 / 1 ; kn) and 5 ( 1 / 1 ; kn). Because of the 
tangency conditions the radius of Kn is 

rn = ((n - l )2 + M)i/2 + kn, rn = ((n + l)2 + W ) 1 " - kn. 

On solving these equations for rn and kn we get 

rn = (nt + i)i/2? kn = n(n2 + l )"1 /2 . 

The two points a t which Kn cuts the real axis are — n ± (w2 + l)1 / 2 , and 
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these are the roots of z2 + 2nz — 1 = 0 . If the left member is regarded 
as a quadratic form in z and 1, Pell's equation is 

t2 - (n2 + l)u2 = 1. 

A solution is obviously t = In2 + 1 , u = 2w, and this serves to determine 
the modular transformation 

z + In 
Tn(z) = 

2nz + (4n2 + 1) 
whose fixed points are the ends of the semicircle5 Kn. But any circle 
passing through the fixed points of a modular transformation is a 
fixed circle for the transformation. Then any circle through the ends of 
Kn is a fixed circle f or Tn(z). We note also that Tn(z) is a member of 
G(z). 

The transformation Tn(z) carries 5( — [2^+1 ] / l ; kn) into 
S(l/[2n— l ] ; kn)\ and the arc of Kn lying between its points of 
tangency with these circles is carried into an arc of Kn which ad
joins the original arc at its point of tangency with 5 ( 1 / [2n — l ] ; kn). 
Repeated application of Tn(z) and its inverse will cover all of Kni 

its end points excluded, by transforms of this arc. If no 5-circles 
of class [o/o] intersect the arc of Kn between 5( — [ 2 n + l ] / l ; kn) 
and 5 ( 1 / [2n — 1 ] ; &„), it will follow that Kn is tangent to infinitely many 
S-circles of class [o/o] and intersects none. 

It is clear that no 5-circle of class [o/o] can cut Kn in the arc be
tween 5 ( - [2n + l ] / l ; kn) and 5 ( 1 / 1 ; kn) since the 5-circles are ex
ternal to each other and have maximum diameter 2. The condition 
that no 5-circle of class [o/o] intersect Kn in the arc between 
5 ( 1 / 1 ; kn) and S ( l / [ 2 » - l ] ; kn) is found to be 

p2 + 2npq - q2 ^ 2», 

where p and q are odd positive integers, q<2n. This can be written in 
the form 

2n + (2nq + p+ l)(p — 1) + (2ff — 1 — q)(q - 1) è 2n, 

which obviously holds, since no terms are negative. 
Consider now any value of k<kn. The 5-circles for k are smaller 

than those for kn and none of class [o/o] touch Kn. Semicircles C', 
C", one inside and the other outside Kn, which pass through the ends 
of Kn and intersect no 5-circles of class [o/o] can be constructed (see 

5 A discussion of Pell's equation can be found in G. B. Mathews, Theory of Num
bers, part I, Cambridge, 1892. 
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Fig. 3) since all such semicircles are invariant under Tn{z). There are 
no 5-circles of class [o/o] in the region between C and C". If L is a 
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FIG. 3 

line terminating at one of the end points of Kni then near the real 
axis it lies in the region between C' and C". Hence L cuts at most a 
finite number of S-circles of class [o/o]. 

Thus, for any k<l, we need only to choose a positive integer n 
such that k<n(n2 + l)~~1/2. The result obtained above shows that the 
irrationals —n±(n2 + l)ï/2 have only a finite number of fractions of 
class [o/o] satisfying (1) for this value of k. This completes the proof 
of the theorem. 
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