
TYPICALLY-REAL FUNCTIONS WITH 
an = 0 FOR n^O (mod 4)1 

M. S. ROBERTSON 

1. Introduction. Let 

00 

(1.1) /(Z) = Z + X>„Z n 

2 

be typically-real for \z\ < 1 ; that is, f(z) within this circle is regular 
and takes on real values when and only when z is real. In particular, 
iif(z) is univalent for \z\ < 1 and has real coefficients, it is also typi
cally-real. We suppose in addition that 

(1.2) an = 0 for n s 0 (mod 4). 

In this paper we obtain sharp inequalities for the coefficients an. 
Sharp inequalities for an are already well known2 with the more re

strictive condition 

(1.3) an = 0 for n s 0 (mod 2) 

holding. In this case |a»| ^n with equality occurring for the odd 
function (z+zd)(l — s2) - 2 . If besides, ƒ(z) is univalent and real on the 
real axis, the coefficients are bounded and satisfy8 the inequalities 

(1.4) |<Z2n-l| + | <*2n+l| ^ 2 , | a, | ^ 1. 

With the less restrictive condition (1.2) replacing (1.3) the author 
obtains the following new and sharp inequalities : 

(1.5) \an\ + 2~8/2[(w - 2) | a2m\ + n\ a2\ ] ^ », m, n odd, n > 1; 

(1.6) \an\ + 2-v\n - 1) | a2\ ^ n, n odd; 

(1.7) |<z»| + | a , | ^ 28 '2, | as | £ 21 '2, » even. 

In each case the equality sign holds for the typically-real function 
00 

2(1 - 21/2* + s 2 ) - 1 = 2 1 ' 2 £ sin mr/4-*». 
l 

Since this function is also univalent for \z\ < 1, the inequalities above 

1 Presented to the Society, September 8, 1939. 
2 See W. Rogosinski, TJber positive harmonische Entwicklungen una typisch-reelle 

Potenzreihen, Mathematische Zeitschrift, vol. 35 (1932), pp. 93-121. 
3 See J. Dieudonné, Polynômes et fonctions bornées d'une variable complexe, Annales 

de l'École Normale Supérieure, vol. 48 (1931), pp. 247-358. 
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are sharp also for the class of univalent functions with real coeffi
cients for which (1.2) holds. 

Since (1.5) may be written in the form 

(1.8) \a2m\ +\a2\ ^ 2 3 / 2 [ l - lim sup \ an/n\\ 

(1.7) will follow at once as well as the following theorem. 

THEOREM. If within the unit circle the typically-real f unction 
oo 

f(z) = z + X) anZn, an - Ofor n = 0 (mod 4), 
2 

has lim supn-oo \^n/n\ = 1 , then f (z) is an odd function; that is to sayy 

an = 0for n = 0 (mod 2). 

In a recent paper4 the author discussed a similar problem when 
an = 0 for n^O (mod p), p odd, and particularly for p = 3. The method 
used in that paper does not generalize completely to p>3. Certain 
modifications in the method were necessary to take care of asym
metric phases which appear when p>3, and these are given here for 
p — 4. The method appears to fail completely for £ > 4 . 

2. Proof of the inequalities. Let 3f(reid) =v(r> 0), for r < 1. Since f(z) 
is typically-real for \z\ =r<l, 

v(r, 0) > 0 for 0 < 0 < ir, v(r. 0) < 0 for T < 6 < 2TT, 
(2.1) 

v(r, ir - 0) = - v(r, T + 0), v(r, 0) = - v(r, - 0). 

In what follows we shall write v(r, 0) as simply v{6). Since also 

(2.2) an = 0 f or n = 0 (mod 4), 

it follows that 

(2.3) ƒ(*) + ƒ(****/*) + ƒ(***<) + ƒ(**•**/*) s 0, 

and in particular the imaginary part of the left-hand member is zero. 
We write this as 

(2.4) v(0) + v(ir/2 + 0) - V(T - 0) - v(<ir/2 - 0) s 0. 

The coefficients oîf(z) are given by 

2 /•* 
(2.5) an = I t>(0) sin W0J0. 

7Tfw J 0 
4 See M. S. Robertson, On certain power series having infinitely many zero coeffi

cients, Annals of Mathematics, (2), vol. 40 (1939), pp. 339-352. 
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Let 

ƒ• T / • T / 4 /» T/2 /» 3 T / 4 •» T 

t>(0) sin WfcZ0 = + + + 
N , 0 Jo J r/4 J ir/2 J 3TT/4 

= h + I2 + h + I A. 
In 12 let d = ir/2—<t) and obtain 

ƒ» 7T/4 

v(v/2 - 0) sin ^(TT/2 - <j>)d<j>. 
o 

In 73 let 0 = 7r /2+0 and obtain 

ƒ» T /4 

Z>(TT/2 + 0) sin n(r/2 + 0)d0. 
o 

In 74 let 6 = w—<j> and obtain 

ƒ» T /4 

Z;(TT - 0) sin n(w - 0)<fy. 
o 

In Ii substitute for v(6) the value obtained from (2.4). Combining the 
new forms for Ji, 72, h, and 74 we have 

/

» T 

z>(<£) sin fKt>d(j> 
o 

(2.10) 

= I {^(TT - 0) + ^ ( T T / 2 - 0) + Ct;(ir/2 + <j>))d<f>, 
J o 

where for brevity we write 

A = sin n(r — (/>) + sin ncj> = 2 sin ^7r/2 COS w(7r/2 — </>), 

(2.11) B = sin w(7r/2 — <£) + sin n<j> = 2 sin W7r/4 cos w(7r/4 — 0) , 

C = sin ^(TT/2 + <£) — sin n<j> = 2 sin ^7r/4 COS w(7r/4 + <£). 

Thus 

/

• T /» T/4 

ZJ(<£) sin n<j>d<j> = 2 sin ^7r/2 I v(ir — cj>) cos n(ir/2 — #)d<£ 
o ^ o 

(2.12) ^ 0 
ƒ

• T / 4 

z;(7r/2 — </>) cos ^(ir/4 — <t>)d<j> 

ƒ• T / 4 

Î;(TT/2 + 4>) cos n{ir/A + <j>)d<t> 
o 

= Ki + K2 + ^ 3 . 
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In Ki let </> = 7r/2 — a, in K% let 4> = TT/4 — a, and in K$ let </> = a — 7r/4. 
Then 

/

T /» T /2 

z>(<£) sin n^d^ = 2 sin wx/2 I z>(7r/2 + a) cos nada 
(2.13) ° J " 4 

+ 2 sin W7J-/4 I 2;(7T/4 + «) cos #ada. 
J o 

Hence the formula (2.5) for the coefficients an may be replaced by 

4 r /• T/2 

an = sin mr/2 I z;(7r/2 + 0) cos ^<£d# 

(2.14) Tr"1 J'« 
V y /• T /2 -1 

+ sin mr/4: I z>(7r/4 + <j>) cos n<i>d4> . 

4 /• T/2 

1 = — I z>(7r/2 + 0) cos (J>d(j> 
TTf ^ ir /4 

(2.15) 

In particular, since a\ = 1 we have 

4 /• T/2 

T/4 

23/2 /» T / 2 

H I ^(7T/4 + 0) COS 0d0. 
7T/* J o 

For even values of n = 2ky k odd, we have 

4 ( _ 1)^-1 Ç T/2 

(2.16) a2k = I ^(TT/4 + <j>) cos 2k<j>d<j>, 
wr2k J o 

whence follows the inequality (to be used later) 

4 r / 2 

(2.17) — *(T/4 + 0)<ty ^ r2-1 a,m |, 
7T • / o 

and in addition the equality 

4 /» T/2 

(2.18) " ° 
; 8 r W 2 

4 /» T / 2 

— I Z>(TT/4 + tf>)d</> 
T J o 

8 r T / 2 

= — I v(0 + TT/4) cos2 k(t>d<t> + ( - l)*r2*a2*. 
7T J o 

From (2.14) we have for odd values of n 
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rn I an | ^ — I v(4> + 7 r /2 ) COS 4)d<j> 
7T */ ,r/4 

(2.19) 
v y 2 3 / 2 / • r l 2 

7T «/ 0 

With the aid of (2.18) the last inequality becomes 

rn\an\ +(-l) f c-12-1 /V2 f ca2* 

4n C 25/2 C T 

^ — I v((j>+ir/2) c o s </></<H I K 4 > + T T / 4 ) c o s 2 £0<*0 
IT J r/4 TT J 0 

4n r*t2 2wk rT/2 

<J— I v(<t>+ir/2) cos <£d<H I ZJ(<£+7T/4) cos 0d0 
IT J x/4 7T •/ 0 

[ 4 /» r/2 2 3 / 2 /• T ' 2 1 

— I V(<J>+TT/2) c o s <j>d<t>-\ I Ï ; ( < ^ + 7 T / 4 ) c o s <j>d<j> 
TT J ir/4 7T t/ o J 

t 4 /• T/2 2 3 / 2 r x / 2 "1 

— I z;(<£+7r/2) cos 0d<H I fl(0+7r/4) cos 0<ty 
7T •/ TT/4 TT J 0 J 

2*i2(n-2k) f ' / 2 
I v(<̂  + 7r/4) COS $</<£, 

7T Jo 

whence, on account of the equalities (2.15), (2.18) with & = 1, and 
(2.17) for values of 2k <n, we have 

H On | + ( - 1)*-12-1/V2*02* 
23/2(^ - 2k) r*12 

< m — 
ir *> o 

(2.20) 
' 21'2 

/
» 7T/2 

v(0 + TT/4) cos2 0 ^ 
0 

r 4 / . T / 2 -i 

(w - 2k) — I v(0 + ir/4:)d(t> + r2a2 

£rn- (21/2/4)(^ - 2k)[r2m\ a2m\ + r2a2}. 

m 
4 

By considering the function — ƒ( — z), which is also typically-real, we 
obtain an inequality similar to this last one except that a2 and a2k have 
been replaced by — a2 and — a2k. Consequently, on combining both 
inequalities and letting r approach one we have for k and n odd 

(2 21) \an\+2~Z,2[^-^)\a2m\ 

+ | (n-2k)a2+(-l)k-l2a2k\]^ny 2k<n. 

In particular, for k = 1 we derive for n odd 
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(2.22) \an\ + 2-*/2[(n- 2 ) | a t m | + n | a , | ] g n, n > 1. 

If in addition m = l, then for n odd 

(2.23) \an\+ 2~li\n - 1) | a2\ ^ ». 

From (2.22) on dividing by w and letting n—»oo we have 

\<Hm\ +\a2\ ^ 2 3 / 2 [ l - l i m s u p l — I l ^ 23 '2, 
L n->oo W I J 

(2.24) 
021 ^ 21/2, lim sup ^ 1 - 2"1 '2 \a2 . 

Though (2.22), (2.23), and (2.24) hold for m either even or odd, 
the interesting inequalities are for n and m both odd. In this case 
they are sharp, as is seen from an inspection of the coefficients of the 
univalent function 

00 

2(1 - 21/2* + z2)-1 = 2 1 ' 2 X sin mr/4:-zn. 
7 1 = 1 
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