TYPICALLY-REAL FUNCTIONS WITH

$a_{n}=0$ FOR $n \equiv 0(\bmod 4)^{1}$
M. S. ROBERTSON

1. Introduction. Let

$$
\begin{equation*}
f(z)=z+\sum_{2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

be typically-real for $|z|<1$; that is, $f(z)$ within this circle is regular and takes on real values when and only when z is real. In particular, if $f(z)$ is univalent for $|z|<1$ and has real coefficients, it is also typi-cally-real. We suppose in addition that

$$
\begin{equation*}
a_{n}=0 \quad \text { for } n \equiv 0(\bmod 4) \tag{1.2}
\end{equation*}
$$

In this paper we obtain sharp inequalities for the coefficients a_{n}.
Sharp inequalities for a_{n} are already well known ${ }^{2}$ with the more restrictive condition

$$
\begin{equation*}
a_{n}=0 \quad \text { for } n \equiv 0(\bmod 2) \tag{1.3}
\end{equation*}
$$

holding. In this case $\left|a_{n}\right| \leqq n$ with equality occurring for the odd function $\left(z+z^{3}\right)\left(1-z^{2}\right)^{-2}$. If besides, $f(z)$ is univalent and real on the real axis, the coefficients are bounded and satisfy ${ }^{3}$ the inequalities

$$
\begin{equation*}
\left|a_{2 n-1}\right|+\left|a_{2 n+1}\right| \leqq 2, \quad\left|a_{3}\right| \leqq 1 \tag{1.4}
\end{equation*}
$$

With the less restrictive condition (1.2) replacing (1.3) the author obtains the following new and sharp inequalities:

$$
\begin{array}{rr}
\left|a_{n}\right|+2^{-3 / 2}\left[(n-2)\left|a_{2 m}\right|+n\left|a_{2}\right|\right] \leqq n, \quad m, n \text { odd, } n>1 \\
\left|a_{n}\right|+2^{-1 / 2}(n-1)\left|a_{2}\right| \leqq n, & n \text { odd } \\
\left|a_{n}\right|+\left|a_{2}\right| \leqq 2^{3 / 2}, & \left|a_{2}\right| \leqq 2^{1 / 2}, \tag{1.7}
\end{array} \quad n \text { even } . ~ \$
$$

In each case the equality sign holds for the typically-real function

$$
z\left(1-2^{1 / 2} z+z^{2}\right)^{-1}=2^{1 / 2} \sum_{1}^{\infty} \sin n \pi / 4 \cdot z^{n}
$$

Since this function is also univalent for $|z|<1$, the inequalities above

[^0]are sharp also for the class of univalent functions with real coefficients for which (1.2) holds.

Since (1.5) may be written in the form

$$
\begin{equation*}
\left|a_{2 m}\right|+\left|a_{2}\right| \leqq 2^{3 / 2}\left[1-\limsup _{n \rightarrow \infty}\left|a_{n} / n\right|\right] \tag{1.8}
\end{equation*}
$$

(1.7) will follow at once as well as the following theorem.

Theorem. If within the unit circle the typically-real function

$$
f(z)=z+\sum_{2}^{\infty} a_{n} z^{n}, \quad \quad a_{n}=0 \text { for } n \equiv 0(\bmod 4)
$$

has $\lim \sup _{n \rightarrow \infty}\left|a_{n} / n\right|=1$, then $f(z)$ is an odd function; that is to say, $a_{n}=0$ for $n \equiv 0(\bmod 2)$.

In a recent paper ${ }^{4}$ the author discussed a similar problem when $a_{n}=0$ for $n \equiv 0(\bmod p), p$ odd, and particularly for $p=3$. The method used in that paper does not generalize completely to $p>3$. Certain modifications in the method were necessary to take care of asymmetric phases which appear when $p>3$, and these are given here for $p=4$. The method appears to fail completely for $p>4$.
2. Proof of the inequalities. Let $J f\left(r e^{i \theta}\right)=v(r, \theta)$, for $r<1$. Since $f(z)$ is typically-real for $|z|=r<1$,

$$
\begin{array}{cc}
v(r, \theta)>0 \text { for } 0<\theta<\pi, & v(r, \theta)<0 \text { for } \pi<\theta<2 \pi \tag{2.1}\\
v(r, \pi-\theta)=-v(r, \pi+\theta), & v(r, \theta)=-v(r,-\theta)
\end{array}
$$

In what follows we shall write $v(r, \theta)$ as simply $v(\theta)$. Since also

$$
\begin{equation*}
a_{n}=0 \quad \text { for } n \equiv 0(\bmod 4) \tag{2.2}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
f(z)+f\left(z e^{\pi i / 2}\right)+f\left(z e^{\pi i}\right)+f\left(z e^{3 \pi i / 2}\right) \equiv 0 \tag{2.3}
\end{equation*}
$$

and in particular the imaginary part of the left-hand member is zero. We write this as

$$
\begin{equation*}
v(\theta)+v(\pi / 2+\theta)-v(\pi-\theta)-v(\pi / 2-\theta) \equiv 0 \tag{2.4}
\end{equation*}
$$

The coefficients of $f(z)$ are given by

$$
\begin{equation*}
a_{n}=\frac{2}{\pi r^{n}} \int_{0}^{\pi} v(\theta) \sin n \theta d \theta \tag{2.5}
\end{equation*}
$$

[^1]Let

$$
\begin{align*}
\int_{0}^{\pi} v(\theta) \sin n \theta d \theta & =\int_{0}^{\pi / 4}+\int_{\pi / 4}^{\pi / 2}+\int_{\pi / 2}^{3 \pi / 4}+\int_{3 \pi / 4}^{\pi} \tag{2.6}\\
& =I_{1}+I_{2}+I_{3}+I_{4}
\end{align*}
$$

In I_{2} let $\theta=\pi / 2-\phi$ and obtain

$$
\begin{equation*}
I_{2}=\int_{0}^{\pi / 4} v(\pi / 2-\phi) \sin n(\pi / 2-\phi) d \phi \tag{2.7}
\end{equation*}
$$

In I_{3} let $\theta=\pi / 2+\phi$ and obtain

$$
\begin{equation*}
I_{3}=\int_{0}^{\pi / 4} v(\pi / 2+\phi) \sin n(\pi / 2+\phi) d \phi \tag{2.8}
\end{equation*}
$$

In I_{4} let $\theta=\pi-\phi$ and obtain

$$
\begin{equation*}
I_{4}=\int_{0}^{\pi / 4} v(\pi-\phi) \sin n(\pi-\phi) d \phi \tag{2.9}
\end{equation*}
$$

In I_{1} substitute for $v(\theta)$ the value obtained from (2.4). Combining the new forms for I_{1}, I_{2}, I_{3}, and I_{4} we have

$$
\begin{align*}
& \int_{0}^{\pi} v(\phi) \sin n \phi d \phi \\
& \quad=\int_{0}^{\pi / 4}\{A v(\pi-\phi)+B v(\pi / 2-\phi)+C v(\pi / 2+\phi)\} d \phi \tag{2.10}
\end{align*}
$$

where for brevity we write

$$
\begin{aligned}
& A=\sin n(\pi-\phi)+\sin n \phi=2 \sin n \pi / 2 \cos n(\pi / 2-\phi) \\
& B=\sin n(\pi / 2-\phi)+\sin n \phi=2 \sin n \pi / 4 \cos n(\pi / 4-\phi) \\
& C=\sin n(\pi / 2+\phi)-\sin n \phi=2 \sin n \pi / 4 \cos n(\pi / 4+\phi)
\end{aligned}
$$

Thus

$$
\begin{align*}
\int_{0}^{\pi} v(\phi) \sin n \phi d \phi= & 2 \sin n \pi / 2 \int_{0}^{\pi / 4} v(\pi-\phi) \cos n(\pi / 2-\phi) d \phi \\
& +2 \sin n \pi / 4 \int_{0}^{\pi / 4} v(\pi / 2-\phi) \cos n(\pi / 4-\phi) d \phi \tag{2.12}\\
& +2 \sin n \pi / 4 \int_{0}^{\pi / 4} v(\pi / 2+\phi) \cos n(\pi / 4+\phi) d \phi \\
= & K_{1}+K_{2}+K_{3}
\end{align*}
$$

In K_{1} let $\phi=\pi / 2-\alpha$, in K_{2} let $\phi=\pi / 4-\alpha$, and in K_{3} let $\phi=\alpha-\pi / 4$. Then

$$
\begin{align*}
\int_{0}^{\pi} v(\phi) \sin n \phi d \phi= & 2 \sin n \pi / 2 \int_{\pi / 4}^{\pi / 2} v(\pi / 2+\alpha) \cos n \alpha d \alpha \tag{2.13}\\
& +2 \sin n \pi / 4 \int_{0}^{\pi / 2} v(\pi / 4+\alpha) \cos n \alpha d \alpha
\end{align*}
$$

Hence the formula (2.5) for the coefficients a_{n} may be replaced by

$$
\begin{align*}
& a_{n}=\frac{4}{\pi r^{n}}\left[\sin n \pi / 2 \int_{\pi / 4}^{\pi / 2} v(\pi / 2+\phi) \cos n \phi d \phi\right. \tag{2.14}\\
&\left.+\sin n \pi / 4 \int_{0}^{\pi / 2} v(\pi / 4+\phi) \cos n \phi d \phi\right] .
\end{align*}
$$

In particular, since $a_{1}=1$ we have

$$
\begin{align*}
1= & \frac{4}{\pi r} \int_{\pi / 4}^{\pi / 2} v(\pi / 2+\phi) \cos \phi d \phi \\
& +\frac{2^{3 / 2}}{\pi r} \int_{0}^{\pi / 2} v(\pi / 4+\phi) \cos \phi d \phi . \tag{2.15}
\end{align*}
$$

For even values of $n=2 k, k$ odd, we have

$$
\begin{equation*}
a_{2 k}=\frac{4(-1)^{k-1}}{\pi r^{2 k}} \int_{0}^{\pi / 2} v(\pi / 4+\phi) \cos 2 k \phi d \phi \tag{2.16}
\end{equation*}
$$

whence follows the inequality (to be used later)

$$
\begin{equation*}
\frac{4}{\pi} \int_{0}^{\pi / 2} v(\pi / 4+\phi) d \phi \geqq r^{2 m}\left|a_{2 m}\right| \tag{2.17}
\end{equation*}
$$

and in addition the equality

$$
\begin{align*}
\frac{4}{\pi} \int_{0}^{\pi / 2} v(\pi / 4 & +\phi) d \phi \tag{2.18}\\
& =\frac{8}{\pi} \int_{0}^{\pi / 2} v(\phi+\pi / 4) \cos ^{2} k \phi d \phi+(-1)^{k} r^{2 k} a_{2 k}
\end{align*}
$$

From (2.14) we have for odd values of n

$$
\begin{align*}
r^{n}\left|a_{n}\right| \leqq & \frac{4 n}{\pi} \int_{\pi / 4}^{\pi / 2} v(\phi+\pi / 2) \cos \phi d \phi \\
& +\frac{2^{3 / 2}}{\pi} \int_{0}^{\pi / 2} v(\phi+\pi / 4) d \phi \tag{2.19}
\end{align*}
$$

With the aid of (2.18) the last inequality becomes

$$
\begin{aligned}
& r^{n}\left|a_{n}\right|+(-1)^{k-1} 2^{-1 / 2} r^{2 k} a_{2 k} \\
& \leqq \frac{4 n}{\pi} \int_{\pi / 4}^{\pi / 2} v(\phi+\pi / 2) \cos \phi d \phi+\frac{2^{5 / 2}}{\pi} \int_{0}^{\pi / 2} v(\phi+\pi / 4) \cos ^{2} k \phi d \phi \\
& \leqq \frac{4 n}{\pi} \int_{\pi / 4}^{\pi / 2} v(\phi+\pi / 2) \cos \phi d \phi+\frac{2^{5 / 2} k}{\pi} \int_{0}^{\pi / 2} v(\phi+\pi / 4) \cos \phi d \phi \\
& =(n-2 k)\left[\frac{4}{\pi} \int_{\pi / 4}^{\pi / 2} v(\phi+\pi / 2) \cos \phi d \phi+\frac{2^{3 / 2}}{\pi} \int_{0}^{\pi / 2} v(\phi+\pi / 4) \cos \phi d \phi\right] \\
& \quad+2 k\left[\frac{4}{\pi} \int_{\pi / 4}^{\pi / 2} v(\phi+\pi / 2) \cos \phi d \phi+\frac{2^{3 / 2}}{\pi} \int_{0}^{\pi / 2} v(\phi+\pi / 4) \cos \phi d \phi\right] \\
& \quad-\frac{2^{3 / 2}(n-2 k)}{\pi} \int_{0}^{\pi / 2} v(\phi+\pi / 4) \cos \phi d \phi,
\end{aligned}
$$

whence, on account of the equalities (2.15), (2.18) with $k=1$, and (2.17) for values of $2 k<n$, we have

$$
\begin{align*}
r^{n}\left|a_{n}\right| & +(-1)^{k-1} 2^{-1 / 2} r^{2 k} a_{2 k} \\
& \leqq r n-\frac{2^{3 / 2}(n-2 k)}{\pi} \int_{0}^{\pi / 2} v(\phi+\pi / 4) \cos ^{2} \phi d \phi \\
& =r n-\frac{2^{1 / 2}}{4}(n-2 k)\left[\frac{4}{\pi} \int_{0}^{\pi / 2} v(\phi+\pi / 4) d \phi+r^{2} a_{2}\right] \tag{2.20}\\
& \leqq r n-\left(2^{1 / 2} / 4\right)(n-2 k)\left[r^{2 m}\left|a_{2 m}\right|+r^{2} a_{2}\right] .
\end{align*}
$$

By considering the function $-f(-z)$, which is also typically-real, we obtain an inequality similar to this last one except that a_{2} and $a_{2 k}$ have been replaced by $-a_{2}$ and $-a_{2 k}$. Consequently, on combining both inequalities and letting r approach one we have for k and n odd

$$
\begin{align*}
& \left|a_{n}\right|+2^{-3 / 2}\left[(n-2 k)\left|a_{2 m}\right|\right. \\
& \left.\quad+\left|(n-2 k) a_{2}+(-1)^{k-1} 2 a_{2 k}\right|\right] \leqq n, \quad 2 k<n . \tag{2.21}
\end{align*}
$$

In particular, for $k=1$ we derive for n odd

$$
\begin{equation*}
\left|a_{n}\right|+2^{-3 / 2}\left[(n-2)\left|a_{2 m}\right|+n\left|a_{2}\right|\right] \leqq n, \quad n>1 \tag{2.22}
\end{equation*}
$$

If in addition $m=1$, then for n odd

$$
\begin{equation*}
\left|a_{n}\right|+2^{-1 / 2}(n-1)\left|a_{2}\right| \leqq n \tag{2.23}
\end{equation*}
$$

From (2.22) on dividing by n and letting $n \rightarrow \infty$ we have

$$
\begin{equation*}
\left|a_{2 m}\right|+\left|a_{2}\right| \leqq 2^{3 / 2}\left[1-\limsup _{n \rightarrow \infty}\left|\frac{a_{n}}{n}\right|\right] \leqq 2^{3 / 2} \tag{2.24}
\end{equation*}
$$

$$
\left|a_{2}\right| \leqq 2^{1 / 2}, \quad \limsup _{n \rightarrow \infty}\left|\frac{a_{n}}{n}\right| \leqq 1-2^{-1 / 2}\left|a_{2}\right|
$$

Though (2.22), (2.23), and (2.24) hold for m either even or odd, the interesting inequalities are for n and m both odd. In this case they are sharp, as is seen from an inspection of the coefficients of the univalent function

$$
z\left(1-2^{1 / 2} z+z^{2}\right)^{-1}=2^{1 / 2} \sum_{n=1}^{\infty} \sin n \pi / 4 \cdot z^{n}
$$

Rutgers University

[^0]: ${ }^{1}$ Presented to the Society, September 8, 1939.
 ${ }^{2}$ See W. Rogosinski, Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Mathematische Zeitschrift, vol. 35 (1932), pp. 93-121.
 ${ }^{3}$ See J. Dieudonné, Polynomes et fonctions bornées d'une variable complexe, Annales de l'École Normale Supérieure, vol. 48 (1931), pp. 247-358.

[^1]: ${ }^{4}$ See M. S. Robertson, On certain power series having infinitely many zero coefficients, Annals of Mathematics, (2), vol. 40 (1939), pp. 339-352.

