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The behavior at infinity of real continuous solutions of algebraic 
differential equations has been studied by Borel, Lindelof, Hardy, 
Fowler, and Vijayaraghavan,3 but, as far as the author is aware, the 
corresponding problem for difference equations has not been con­
sidered, except for the special case of solutions in the neighborhood 
of a double point.4 

In this paper we propose to study the rate of increase, as the inde­
pendent real variable x becomes infinite, of real continuous solutions 
of algebraic difference equations: that is, of equations of the form 

(1) P{y{% + tn), y(x + m — 1), • • • , y(%), x) = 0, 

where P is a polynomial with real coefficients in its arguments 
y(x+m)1 y(x+m — 1), • • • , y(x)f and x. Among the terms of the poly­
nomial P , there is a term 

(2) T' = A'x«'y(xy<>'y(x + 1)W • • • ? ( * + w)*»\ 

which has the property that if 

(3) T = Ax«y(xyoy(x + l)^1 • • • ? ( * + tn)** 
1 Presented to the Society, December 30, 1937. 
2 I am indebted to Professor G. D. Birkhoff for counsel and encouragement during 

the preparation of this paper. 
3 E. Borel, Mémoire sur les séries divergentes, Annales de l'École Normale Su­

périeure, Paris, (3), vol. 16 (1899), p. 26 ff.; E. Lindelof, Sur la croissance des intégrales 
des équations différentielles algébriques du premier ordre. Bulletin de la Société Mathé­
matique de France, vol. 27 (1899), pp. 205-215; G. H. Hardy, Some results concerning 
the behavior at infinity of a real and continuous solution of algebraic differential equations 
of the first order, Proceedings of the London Mathematical Society, (2), vol. 10 
(1912), pp. 451-^68; R. H. Fowler, Some results on the form near infinity of real con­
tinuous solutions of a certain type of second order differential equations, Proceedings of 
the London Mathematical Society, (2), vol. 13 (1914), pp. 341-371; T. Vijayaragha­
van, Sur la croissance des fonctions définies par les équations différentielles, Comptes 
Rendus de l'Académie des Sciences, Paris, vol. 194 (1932), pp. 827-829. 

4 If lim^oo u(x) = U, then U is a double point of the difference equation 
u(x+p) =f[u(x+p — 1), u(x-\-p — 2), ' - - , u(x)], when it is a root of the algebraic 
equation U—f{U, U, • • • , U). See S. Lattes, Sur les suites récurrentes non linéaires 
et sur les fonctions génératrices de ces suites, Annales de la Faculté des Sciences de 
Toulouse, (3), vol. 3 (1911), pp. 75-124; J. Horn, Zur Theorie der nicht linear en 
Differential- und Differenzengleichungen, Journal für die reine und angewandte 
Mathematik, vol. 141 (1912), pp. 182-216. 
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is any other term of the polynomial P , then in the sequence of differ­
ences 

(4) 0m' - 0m, 0m'_i - /3w_i, • • • , 0/ - ft, 0O' - 0o, a' - a 

the first nonzero term is positive. We shall call T' the principal term 
of the equation. The proofs of the first four theorems are based upon 
the limits, as x—•»«>, of the ratios of the principal term to the other 
terms of the difference equation. 

For the convenience of expressing the iterates of the logarithm and 
the exponential we shall use the notation that was employed by 
Hardy in his book Orders of Infinity, namely, 

ei(v) = exp 0 ) , en(v) = exp [en_i0) ] , 

h(v) = log (»), ln(v) = log [ U W ] . 

THEOREM 1. A real continuous solution of an algebraic difference 
equation of the first order cannot equal or exceed the function Ce^xlnty)} 
for all x>Xo(jt), where C is any positive constant and n is any integer. 

PROOF. First, assume that Ce2[xln(x)] is a solution of the first order 
difference equation (1). Divide the equation by T' and replace y(x) 
by Ce2[xln(x)]. Then, all terms except one, T'/T', are of the form 
T/T', where 

(5) T/T' = Bx«-«f(e2[xln(x)]y«-W(e2[(x + \)ln{% + 1)])W. 

These terms T/T' are of three possible types: 

\e?\\x + 1)M* + 1)J; 

^ B\ \ n M > ft' - ft, ft' > ft; 

(c) B*«-«', 0/ = ft, 0o' = 0o, a' > a, 

where i£0, K\, K2 are rational numbers. The limit of each of these 
expressions as #—><x> is zero. Hence, we have a contradiction to the 
assumption that y= Ce2[#Zn(#)] is a solution of (1). For there exists 
an Xo(n) such that for x>x0(n) the sum of all the terms T/T' is less 
than one in absolute value, whereas T'/T' = l. 

Second, a function y(x) which is greater than Ce2[x/n(#)] f ° r 

x>Xo(ri) cannot6 be a solution of the first order difference equation 

6 The symbol Xo(n) does not always denote the same value. In fact, it may repre­
sent several different values within one proof. 
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(1). For assume that y{x) is such a solution of (1); then the ratios 
T/T' are again of the three types: 

( xK"y(x)Kl>i P1'-?1 

(a') B\ yKJ \ , #>&, 
{ y{% + 1) ) 
t XK2 \ /3o'-/3o 

(bo B\-7~,r > M >Po, 
ly(x)) 

(c') Bxa-a', a! > a. 

The ratios of types (b') and (c') approach zero, as x becomes infinite, 
for all rational values of K%\ hence, if y{x) is a solution, not all of 
the ratios of type (a') may approach zero, as x—>oo, or we have a 
contradiction as above. Thus there is at least one ratio of type (a') 
for which Ki>0. There may be several such ratios; however, the one 
which has the maximum value of K\ is for all x>Xo(n) greater in ab­
solute value than any of the others. Hence if Mi denotes this maxi­
mum value of Kit then 

xKQy(x)Ml 1 
(6) ^ — > — 

y(x + 1 ) N 
for all x greater than or equal to x0(n). From this there follow in suc­
cession 

y(x + 1) ^ NxKoy(x)Ml x ^ x0, 

y ( * o + l ) ^ N[x0y(xo)]M, where M ^ K0, Mh 2, 

y(x0 + p) S [Ny(xo)]MP(xo + p)MP+\ p = 1, 2, 3, • • • . 

Therefore, 

, 0 , ,. y(^o + P) < . r [Ny(X())}Mp(xo + p)MV+l 

(8) lim —= - s> lim — — = 0. 
P->OO e2[(x0 + p)ln(x0 + p)\ p-oo e2[(x0 + p)ln(x0 + p)\ 

This contradicts the assumption that y{x) is greater than Ce2 [#/„(#)]. 
Thus, no continuous function ;y(x), y(x) ^ Ce2[x/W(x)] for all x>xo(n), 
may be a solution of (1). 

I t is important to note that the above theorem does not state 
that a solution of a first order difference equation may not exceed 
Ce%\xln(x)\ at an infinite number of points Xlj X 2 , X%y ' ' ' , X% ^ 0 0 . 
However, it does follow from the proof that if a solution y(x) equals 
e2[#Zw(#)] at a point x>x0(n)1 then y(x + l) <e2[(x + l)/n(x + l ) ] . 
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Thus a solution y(x) cannot exceed £2[#Zn(#)] o v e r a n interval of 
difference,6 for x>x0(n). 

Although we have not been able to generalize Theorem 1 so as to 
include all algebraic difference equations of the mth order, we have 
been able to establish the following facts: 

THEOREM 2. The f unction Ce2[xln(x)], (CVO), cannot be a solution 
of an algebraic difference equation for any value of n. 

The proof is similar to the first part of Theorem 1. Under the as­
sumption that the theorem is false, y(x) = Ce2[xln(x)] is a solution of 
(1) and 

T _m_ 

— = #*«-«'n {«![(*+./%(*+/)]}'"-*''. 
T j=o 

The considerations of the limits of these ratios divide into m + 2 cases 
corresponding to the m + 2 possible relations (4) between the expo­
nents of the principal term and those of the other terms of (1). In the 
(m + \-i)th case, j8m' =j8m, j8«£_i = |8TO_i, • • • , j8/+i=j8<+i, 0/ > & , the 
ratios are of the form 

B 

i-i 

xK«Il{e2[(x+j)ln(%+j)]}Ki 
j - 0 

^ [ 0 + i)ln{x + i)] 

where the Kv, (fl = 0, 1, 2, • • • , i), are rational numbers. The limit, as 
x becomes infinite, of such a quotient is zero for i = 0, 1, 2, • • • , m 
regardless of the magnitudes of the Kv. In the (m + 2)nd case, the 
ratios also approach zero for they are of the form Bxa~a\ (a'>a). 
Thus, in all cases lim^oo T/T' = 0. This contradicts the assumption 
that Ce[xln(x)] is a solution of (1). 

THEOREM 3. No solution of an algebraic difference equation of the 
mth order can exceed a function Ce2[x/W(^)] for all x>xo(n), if the 
terms of the equation are so related that when /3m' =j3m then /?/ ^]8t-, 
(t = 0, 1, 2, • • • , m - l ) . 

6 It is interesting to observe that from this fact we can obtain a proof that a solu­
tion of a first order algebraic differential equation cannot equal or exceed e2[#/n(#)] 
for all x^Xo(n). For, when the interval of difference, say co, is reduced, the intervals 
for which y(x) may exceed e2[#W#)] are also reduced. In the limit as co—K), the length 
of these intervals approaches zero and the difference equation approaches a differ­
ential equation. Hence a solution of an algebraic differential equation could be at 
most tangent to ei\xln{x)\, x^Xa(n). However, Hardy, Lindelof and Borel have 
established lower bounds for the rate of increase of the solutions of an algebraic 
differential equation. 
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PROOF. Assume that y(x)y a solution of (1), is greater than or equal 
to Ce%[xln(x)\ for x>x0(n). Under the hypothesis of the theorem the 
sequences (4) are of two general types : either the first term is positive 
and the other terms are arbitrary, or the first term is zero and all the 
other terms, except the last, are greater than or equal to zero. Corre­
sponding to these two types of sequences the ratios T/T' take the 
forms 

( xKoy(x)Kly(x + l )^ 2 • • • y(x + m — \)Km\ &»'-&» 

y(x + m) 

and 

fko 

ly(x)kly(x + l)*2 • • • y(x + i) i)*i-l) 

respectively, where K0, KXl K^ • • • , Km are rational numbers, 
ku fe, • • • , ki-i are positive integers or zero, and ko is any positive 
or negative integer unless all k3 = Q, j = l, 2, • • • , i — 1. The second 
set of ratios all approach zero as x increases indefinitely. Hence, not 
all of the ratios of the first type do approach zero or otherwise y{x) is 
not a solution of (1). Of the finite number of terms of this type there 
is a maximum value for K0, a maximum value for Ki9 • • • . Now con­
sider the ratio 

'xMoyix^tyix + l ) ^ 2 • • • y(x + m — l)M" 

I y(x + m) }• 
where Mi is the maximum value of all the Ki for the ratios of type (9). 
Some positive constant power of this expression is greater, for 
x>Xo(n), than the absolute value of any of the ratios T/T'. And since 
some of the ratios do not approach zero, 

xMoy(x)Mly(x + 1)M2 - - - y(x + tn — l)Mm 1 

y(x + m) N 

That is, 

y(x + m) <> NxMoy(x)Ml • • • y(x + m — l)Mm, x ^ x0(n), 

or 

y(x + m) g N[xy(x) • • • y(x + m — i)]M, where M ^ 2, M,-, 

(i = 0, 1, • • • , * » ) . 
I t follows from this that 
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y(*b + p + m) ^ (*o + pyM+1)P+2[Ny(x0) • • • y(x0 + m - l ) ] ^ 1 ^ 1 , 

P = 1, 2, 3, • • • . 
Thus, 

:y(*o + # + m) 
lim r-
2>-̂oo Ce2L(^o + £ + m)ln(xo + p + m) J 

(*o + ^) ( M + 1 ) P + 2[^(x0) • • • y(x0 + tn- l)]w+vp+1 

<: i i m — Q 
p-+oo Ce2[(x0 + p + m)ln(xo + m + p)\ 

But this is contrary to the hypothesis that y{x) is greater than 
Ce2[xln(x)] for x>Xo(n). Therefore if the terms of equation (1) 
are so related that /3/ ĵ8«-, (i = 0, 1, 2, • • • , m — 1), for every term T 
for which (3m=fim1 then a solution cannot remain greater than 
Ce2[xln(x)] for all x>x0(w). 

In Theorem 3, the difference equation was restricted but there 
were no restrictions as to the regularity of increase of the solution. 
Now we consider the general difference equation but make restric­
tions on the solutions. 

THEOREM 4. If y{x) is a solution of an algebraic difference equation 
of the mth order and if there exists a constant such that the ratio 
y(x)K/y(x-\-l), where K is any rational number', gives a monotone se­
quence as x ranges over the values a, a + 1, a + 2, • • • , then y{x) cannot 
exceed Ce2 [xln(x) ], for any integer n, for all x>x0(n). 

The proof follows immediately from the above considerations. The 
ratios T/T', corresponding to the (m + l—i)ih case for the sequence 
(4), are of the form 

( xKoy(x)Kl • • • y(x + i — l)K i\ Pi'—Pi 

y(x + i) 
When the conditions of the theorem are satisfied and y(x) is greater 
than Ce2 [xln(x) ] for all x, then each of the ratios 

[ y ( * + * - 1)1* . 1 o 
: — — > * = 1, 2, • • • ,m, 

y{x + i) 
gives a monotone decreasing sequence as x takes on the values xi = a 
+m — l,X2 = a+m1Xz = a+m+l, • • •. Moreover, lim*-** xKo/y(x) = 0. 
Hence a ratio TjT' consists of a product of xKo/y(x) times ratios which 
decrease monotonically as x ranges over the values x2, #3, x4, • • • . 
Thus, lim^oo T/T' = 0, for all possible ratios, and this contradicts the 
assumption that y(x) is a solution of (1). 



i94o] ALGEBRAIC DIFFERENCE EQUATIONS 175 

DEFINITION. A function f (x) shall be said to be a regularly increasing 
function, if f or every rational value of K, [f(x)]K/f(x+l) is a mono-
tonic function X >Xo. 

COROLLARY. If a solution y{x) of an algebraic difference equation is 
a regularly increasing function, then 

| y(x) | < e2[xln(x)]9 # > xo(n). 

The proof is evident. 
We have shown that a regularly increasing solution of an algebraic 

difference equation cannot increase as rapidly as the function 
62[*/„(«)]. The question naturally arises: Is there a function with a 
slower rate of increase which is also a bounding function for the regu­
larly increasing solutions of algebraic difference equations? Since 
there are solutions of difference equations that increase as rapidly 
as the function a6*, where a and b are arbitrary numbers,7 it is clear 
that a bounding function for all regularly increasing solutions of all 
algebraic difference equations must increase more rapidly than a 
function of the form e\{cxmeKx). Therefore, a bounding function must 
increase as rapidly as 02(«0, where v = xp(x) and lim^oo p(x) = °o> 
Hence, if there existed a better bounding function than £2 [#/«(#)] it 
would be of the form e2(v), where p{x) increases slower than any ln{oc). 
Hardy in Orders of Infinity makes the following statement: "It is 
possible to define functions whose increase . . . is slower than that of 
any ln(x) ; but this is not possible if we confine ourselves to functions 
defined by a finite and explicit formula involving the ordinary func­
tional symbols of analysis." Therefore, if we confine ourselves to the 
ordinary functional symbols, we have obtained the best bounding 
function. 

Now let us compare our results for the rate of increase of solutions 
of difference equations with those known for differential equations. 
The corollary above corresponds in some respects to the unpublished 
results of Vijayaraghavan relative to the maximum rate of increase 
of a solution of an algebraic differential equation. He states at the 
close of a note in the Comptes Rendus des Séances de l'Académie 
des Sciences:3 "If y(x), a function defined for all positive values of x, 
is a solution of an algebraic differential equation of the rath order, 
and if the increase of y satisfies certain very restrictive regularity 
conditions, then for x>x0, \y(x)\ <em(kxA), where em(x) designates 
the rath iterate of the exponential function and k and A are properly 
determined constants." If the regularity conditions of the two results 

7 A solution of y(x+l) =y(x)h
t b a rational number, is y(x) =a6*, where y(0) =a. 
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are comparable, we see that the upper bound for the regularly in­
creasing solutions of a differential equation for m > 1 is much greater 
than that for the regularly increasing solutions of a difference equa­
tion. I t is interesting to observe that there actually are differential 
equations of higher than first order which have regularly increasing 
solutions that increase more rapidly than any regularly increasing 
solution of any algebraic difference equation. In order to see this it 
is sufficient to verify that the differential equation 

xyy" - x(y')2 - (2x2 + \)yy' = 0 

is satisfied by y(x) = e2(x
2). 

The story is quite different for equations of first order. There are 
regularly increasing solutions of some first order algebraic difference 
equations that increase more rapidly than any solution of any first 
order differential equation. For,3 the solutions of a first order differ­
ential equation cannot increase as rapidly as e%(x) and, as was men­
tioned before, there are solutions of some difference equations of the 
first order that increase as rapidly as a6*, where a and b are arbitrary 
constants. 

The above regularity conditions are very stringent. Are such regu­
larity conditions necessary? As a partial answer to this question, we 
now show that unless some regularity conditions are imposed on the 
solutions, there is no bounding function for the solutions of all alge­
braic difference equations of higher than first order. The following 
theorem and its proof are modelled after the analogous theorem for 
differential equations that was given by Vijayaraghavan.3 

THEOREM 5. For a given f unction $(x) with an arbitrary rate of in­
crease, there exists a second order algebraic difference equation 

P(y(x), y(x + 1), y(x + 2), x) = 0 

that is satisfied f or all real values of x by a real and continuous f unction 
fix), where \f(x) | > <£(#) for an infinite number of values Xj, {x3} —»<*>. 

PROOF. We form the function 

(io) ƒ(*) = (i/2)[K^) + R^i)], 
where &(z) is the Weierstrass p-function with the two fundamental 
periods co and co', z is the conjugate of z, and a=œ+irjf where rj is yet 
to be determined. 

We choose rj real in such a manner that for an infinite number of 
integral values n$ and pj 
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<u) l"-""/-'l<i5iibF' 
For this it is sufficient to take for 77/co' a continued fraction in which 
the denominators of the partial quotients increase in a sufficiently 
rapid manner. 

For real values of z,f(z) is the real part of $>(az) ; hence it is a real 
function. If z = njœ+pjù)'i+ti, where / is real and very small, the real 
part of $>(z) is asymptotic to —1/t2. Therefore, it follows from the 
inequality (11) that for z = n3- and for j sufficiently large 

(12) - ƒ(»,) ~ — > *(» , ) . 

Now by virtue of the addition formula for p(z), 

®(az) = 2f(z) — v(az) 

satisfies a first order algebraic difference equations. If %>(az) is elimi­
nated between the difference equation for 2f(z) — $>(az) and the one 
obtained from it by replacing 2 by s + 1 , we obtain a second order 
algebraic difference equation that is satisfied by the real function of 
f(z) for all real values of z. This completes the proof. 
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