AN EXTENSION OF A COVARIANT DIFFERENTIATION PROCESS ${ }^{1}$

MARIE M. JOHNSON

Craig ${ }^{2}$ has considered tensors $T_{\beta}^{\alpha} \ldots .$. whose components are functions of n variables represented by x and their m derivatives $x^{\prime}, x^{\prime \prime}, \cdots, x^{(m)}$. He obtained the covariant derivative

$$
T_{\beta \cdots x^{(m-1) \gamma}}^{\alpha \cdots}-m T_{\beta \cdots x^{(m) \lambda}}^{\alpha \cdots}\left\{\begin{array}{l}
\lambda \tag{1}\\
\gamma
\end{array}\right\}, \quad m \geqq 2
$$

where

$$
\left\{\begin{array}{l}
\lambda \tag{2}\\
\gamma
\end{array}\right\} \equiv x^{\prime \alpha} \Gamma_{\gamma \alpha}^{\lambda}+(1 / 2) x^{\prime \prime \beta} f_{\gamma \delta \beta} f^{\delta \lambda},
$$

and partial differentiation in (1) is denoted by the added subscript. Throughout, a repeated letter in one term indicates a sum of n terms. The purpose of this note is to derive another tensor from $T_{\beta}^{\alpha \ldots . .}$ whose covariant rank is one larger. The general process will be shown clearly by using $T^{\alpha}\left(x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)$.

The extended point transformation

$$
\begin{aligned}
x^{\alpha} & =x^{\alpha}(y), \quad x^{\prime \alpha}=\frac{\partial x^{\alpha}}{\partial y^{i}} y^{\prime i} \\
x^{\prime \prime \alpha} & =\frac{\partial x^{\alpha}}{\partial y^{i}} y^{\prime \prime i}+\frac{\partial^{2} x^{\alpha}}{\partial y^{i} \partial y^{j}} y^{\prime i} y^{\prime j}, \cdots, \quad \alpha=1, \cdots, n
\end{aligned}
$$

gives the tensor equations of transformation of the tensor T^{α} as

$$
\begin{equation*}
\bar{T}^{i}\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=T^{\alpha}\left(x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right) \partial y^{i} / \partial x^{\alpha} \tag{3}
\end{equation*}
$$

where y stands for the n variables $y^{1}, y^{2}, \cdots, y^{n}$ and a similar notation is used for the derivatives $y^{\prime}, y^{\prime \prime}$, and $y^{\prime \prime \prime}$. On differentiating equations (3) with respect to $y^{\prime k}$ it is found that

$$
\begin{equation*}
\bar{T}_{y^{\prime} k}^{i}=\left(T_{x^{\prime} \beta}^{\alpha} \frac{\partial x^{\beta}}{\partial y^{k}}+T_{x^{\prime \prime \beta}}^{\alpha} \frac{\partial x^{\prime \prime \beta}}{\partial y^{\prime k}}+T_{x^{\prime \prime \prime}, \beta}^{\alpha} \frac{\partial x^{\prime \prime \prime} \beta}{\partial y^{\prime k}}\right) \partial y^{i} / \partial x^{\alpha} \tag{4}
\end{equation*}
$$

The derivatives can be expressed by using the following general formulas:

[^0]\[

$$
\begin{equation*}
\frac{\partial x^{(m-1) \beta}}{\partial y^{(m-2) k}}=(m-1) \frac{\partial x^{\prime \beta}}{\partial y^{k}}, \quad \frac{\partial x^{(m) \beta}}{\partial y^{(m-2) k}}=\frac{m(m-1)}{2} \frac{\partial x^{\prime \prime \beta}}{\partial y^{k}} \tag{5}
\end{equation*}
$$

\]

in which $\partial x^{\beta} / \partial y^{k}$ are eliminated by ${ }^{3}$

$$
\overline{\left\{\begin{array}{l}
l \tag{6}\\
k
\end{array}\right\}} \frac{\partial x^{\beta}}{\partial y^{l}}=\frac{\partial x^{\prime \beta}}{\partial y^{k}}+\left\{\begin{array}{l}
\beta \\
\gamma
\end{array}\right\} \frac{\partial x^{\gamma}}{\partial y^{k}} .
$$

The derivatives $\partial x^{\prime / \beta} / \partial y^{k}$ are simplified by first writing

$$
\begin{equation*}
x^{\prime \prime \beta}=\frac{\partial x^{\beta}}{\partial y^{j}} y^{\prime \prime j}+\bar{\Gamma}_{j k}^{r} y^{\prime j} y^{\prime k} \frac{\partial x^{\beta}}{\partial y^{r}}-\Gamma_{\alpha \delta}^{\beta} x^{\prime \alpha} x^{\prime \delta} \tag{7}
\end{equation*}
$$

with the help of (2), (6) $\operatorname{and}^{4} f_{\alpha \beta \gamma} x^{\prime \beta}=0$. It is necessary also to have

$$
\begin{equation*}
\frac{\partial^{2} x^{\beta}}{\partial y^{i} \partial y^{k}}=\bar{\Lambda}_{j k}^{t} \frac{\partial x^{\beta}}{\partial y^{t}}-\Lambda_{\alpha \delta}^{\beta} \frac{\partial x^{\alpha}}{\partial y^{j}} \frac{\partial x^{\delta}}{\partial y^{k}} \tag{8}
\end{equation*}
$$

where

$$
\Lambda_{\alpha \delta}^{\beta}=\Gamma_{\alpha \delta}^{\beta}-(1 / 2) f^{\beta \gamma}\left(f_{\delta \gamma \tau}\left\{\begin{array}{l}
\tau \\
\alpha
\end{array}\right\}+f_{\gamma \alpha \tau}\left\{\begin{array}{l}
\tau \\
\delta
\end{array}\right\}-f_{\alpha \delta \tau}\left\{\begin{array}{l}
\tau \\
\gamma
\end{array}\right\}\right) .
$$

This is obtained from Taylor's ${ }^{5}$ formula (19) in the following way. Multiply this formula by $\left(\partial y^{k} / \partial x^{\epsilon}\right) f^{\beta \epsilon}=\left(\partial x^{\beta} / \partial y^{l}\right) \bar{f}^{k l}$, and sum for k. Use the tensor equations for $f_{\alpha \beta \gamma}$ and substitute from (6) for $\partial x^{\prime} \gamma / \partial y^{i}$.

By means of formulas (6) and (8) and the tensor $Q^{\beta}\left(x, x^{\prime}, x^{\prime \prime}\right)$ $\equiv x^{\prime / \beta}+\Gamma_{\alpha \delta}^{\beta} x^{\prime \alpha} x^{\prime \delta}$ the partial derivatives of (7) have the form

$$
\frac{\partial x^{\prime \prime \beta}}{\partial y^{k}}=-\left|\begin{array}{l}
\beta \tag{9}\\
\gamma
\end{array}\right| \frac{\partial x^{\gamma}}{\partial y^{k}}+\overline{\left.\right|_{k} ^{r} \mid} \frac{\partial x^{\beta}}{\partial y^{r}}-2\left\{\begin{array}{l}
\beta \\
\alpha
\end{array}\right\} \overline{\left\{\begin{array}{l}
\tau \\
k
\end{array}\right\}} \frac{\partial x^{\alpha}}{\partial y^{l}}+2 \overline{\left\{\begin{array}{l}
r \\
i
\end{array}\right\}} \overline{\left\{\begin{array}{l}
i \\
k
\end{array}\right\}} \frac{\partial x^{\beta}}{\partial y^{r}},
$$

in which we have the nontensor form

$$
\left|\begin{array}{l}
\beta \tag{10}\\
\gamma
\end{array}\right|=Q_{x^{\gamma}}^{\beta}-Q_{x^{\prime}, \alpha}^{\beta}\left\{\begin{array}{l}
\alpha \\
\gamma
\end{array}\right\}+Q^{\alpha} \Lambda_{\alpha \gamma}^{\beta} .
$$

If formulas (6) and (9) are substituted in equations (5) and the results used in (4), we find

$$
\begin{aligned}
\bar{T}_{y^{\prime k}}^{i}= & \left(\left.T_{x^{\prime} \beta}^{\alpha}-2 T_{x^{\prime}, \delta}^{\alpha}\left\{\begin{array}{l}
\delta \\
\beta
\end{array}\right\}-\left.3 T_{x^{\prime}, \delta \delta}^{\alpha}\right|_{\beta} ^{\delta} \right\rvert\,\right) \frac{\partial x^{\beta}}{\partial y^{k}} \frac{\partial y^{i}}{\partial x^{\alpha}} \\
& -\left(-2 \bar{T}_{y^{\prime, l}}^{i} \overline{\left\{\begin{array}{l}
l \\
k
\end{array}\right\}}-3 \bar{T}_{y^{\prime}, l l}^{i} \overline{\left.\right|_{k} ^{l} \mid}\right)
\end{aligned}
$$

[^1]Hence the new tensor whose covariant rank has been increased by one is

$$
\left.T_{x^{\prime} \beta}^{\alpha}-2 T_{x^{\prime}, \delta}^{\alpha}\left\{\begin{array}{l}
\delta \tag{11}\\
\beta
\end{array}\right\}-\left.3 T_{x^{\prime}, \delta \delta}^{\alpha}\right|_{\beta} ^{\delta} \right\rvert\,
$$

where $\left\{\begin{array}{l}\delta \\ \beta\end{array}\right\}$ and $\left|\begin{array}{l}\delta \\ \beta\end{array}\right|$ are defined in (2) and (10).
Because of the general relations in (5) it is easy to verify that the tensor

$$
\begin{align*}
& m \geqq 3, \tag{12}
\end{align*}
$$

has a covariant rank which is one larger than that of $T_{\gamma}^{\alpha \ldots .}$ whose components are functions of $\left(x, x^{\prime}, \cdots, x^{(m)}\right)$.

If the components of the tensor $T^{\alpha}\left(x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)$ do not contain the derivatives $x^{\prime \prime \prime}$, then (11) reduces to Craig's covariant derivative (1), and if there are no $x^{\prime \prime}$ or $x^{\prime \prime \prime}$ derivatives, then the result is a partial differentiation with respect to x^{\prime}.

The usual rules for the derivative of a sum of tensors of the same type and rank and for the product of any tensors are preserved by this provess.

If $m=2$, a scalar $T\left(x, x^{\prime}, x^{\prime \prime}\right)$ will give a covariant tensor which is similar to that in (11) when the tensor equations for $\bar{T}\left(y, y^{\prime}, y^{\prime \prime}\right)$ are differentiated with respect to y instead of y^{\prime}. The tensor is

$$
\left.T_{x \beta}-T_{x^{\prime} \delta}\left\{\begin{array}{l}
\delta \tag{13}\\
\beta
\end{array}\right\}-\left.T_{x^{\prime}, \delta}\right|_{\beta} ^{\delta} \right\rvert\, .
$$

However, if $m=2$ and a tensor $T^{\alpha}\left(x, x^{\prime}, x^{\prime \prime}\right)$ is used, an extra term $T^{\delta} \Lambda_{\delta \beta}^{\alpha}$ has to be added to three terms similar to those in (13). If this process is performed on the tensor $Q^{\alpha}\left(x, x^{\prime}, x^{\prime \prime}\right)$, the result is the zero tensor.

[^2]
[^0]: ${ }^{1}$ Presented to the Society, April 15, 1939.
 ${ }^{2}$ H. V. Craig, On a covariant differentiation process, this Bulletin, vol. 37 (1931), pp. 731-734.

[^1]: ${ }^{3}$ J. H. Taylor, A generalization of Levi-Civita's parallelism and the Frenet formulas' Transactions of this Society, vol. 27 (1925), p. 255.
 ${ }^{4}$ J. H. Taylor, loc. cit., p. 248.
 ${ }^{5}$ J. H. Taylor, loc. cit., p. 254.

[^2]: Oberlin College

