
COPELAND'S DEFINITION OF A STIELTJES INTEGRAL 

R. L. JEFFERY 

Our present interest in Copeland's definition1 of the Stieltjes integral 
of g(x) with respect to the monotone f unction ƒ (#) is due to a remark 
by T. H. Hildebrandt2 to the effect that in the proof of the formula 
for integration by parts it is required that f(x) = J {f(x+0) +f(x — 0)} . 
In looking over Copeland's paper it was found that it is only in the 
proof of this formula that ƒ (x) is so restricted. Furthermore, it became 
clear that the definition possesses a considerable degree of generality. 
In the present note we simplify the definition, and compare it with 
that of the Riemann-Stieltjes integral and the Lebesgue-Stieltjes in
tegral. 

The classical definition of a Riemann-Stieltjes integral is 

(1) RS f gd/=lim i,g(ak){f(xk)-f(xk-i)}, 
J a »-»«> k=zX 

where (xk-i> Xk) is a finite subdivision of the interval a^x^fif with 
Xi — Xi-i—>0 and £& any point on (xk-i, X/c). The limit (1) exists when g 
is continuous, but may fail to exist even for functions g of bounded 
variation unless further restrictions3 are placed on the subdivision 
(xk-ij Xk) or on the choice of £&. Copeland's definition is likewise based 
on what can be interpreted as a sequence of finite sets {(x&)}, 
& = 1, 2, • • • , n, of (a, /3), and the integral is given by 

ƒ** #(Xl) + • • • + g(Xn) 
gdf = lim ^ ; *V ; • 

a n—>w ft 

The sequence {xk} is defined wholly in terms of/, and the limit (2) 
exists for a wide class of functions including functions of bounded 
variation. 

The set {xk}, k = l, 2, • • • , n; n = l, 2, • • • , on which (2) is based 
is denumerable. Consequently the value of the integral depends only 
on the values of g over this denumerable set, which permits g an un
desirable amount of freedom. To obviate this defect, and to bring the 
definition more in line with that of the Riemann-Stieltjes integral, we 
introduce some changes in its formulation. 

On the interval a^xSfi let g(x) be bounded, and fix) be bounded 
1 This Bulletin, vol. 43 (1937), pp. 581-588. 
2 American Mathematical Monthly, vol. 45 (1938), p. 277. 
3 This point has been thoroughly covered by Hildebrandt, loc. cit., §§6, 7, 8,9. 

512 



STIELTJES INTEGRALS 513 

and non-decreasing. In order to keep the initial stages as simple as 
possible, we shall assume that ƒ ( a + 0 ) = 0 , ƒ (/3 — 0) = 1. This restriction 
will be removed later. For a given n and for k = 1, 2, • • • , n — 1 let Xk 
be the greatest lower bound of numbers x for which 

(3) ƒ ( * - 0) S k/n Sf(x + 0). 

The numbers Xk, (fe = l, 2, • • • , n — 1), all lie on the open interval 
a<x</3. Let a<x<b be an open interval on ce<x</3, and for any n 
let p be the number of points of the set {xh\ on a<x<b. Then 

/(» - 0) - f(a + 0) - 1/n < p/n < f(b - 0) - / (a + 0) + 1/n, 

from which it follows that 

(4) lim p/n = f(b - 0) - f (a + 0). 

Also if XQ is a point of discontinuity of ƒ on a <x <fi and g is the num
ber of times XQ is repeated in the set \Xk}, then 

/Oo - 0) - 1/» < q/n < f(xQ + 0) + 1/n, 

which gives 

(5) lim q/n = ƒ(*„ + 0) - f(x0 - 0). 
n—>oo 

The set {#&}, fe = l, 2, • • • , w — 1, is non-decreasing on a<x</3. Let 
£i be a point o n a < x < x i , & a point on Xk-iSxSxk if tf^^-i, %k = Xk 
if ^ = ^ - i , & = 2, 3, • • • , n — 1, and £n a point on xn-i<x<!3. Form 
the sum 

n gtti) + ' • ' + «tt») 

and over the open interval a<x<fi define 

(6) CS f grf/= limG» 
•J a<x</3 n->oo 

provided this limit exists. If XQ is a point of discontinuity of ƒ on 
« < # < / ? , it follows from (5) that the part of Gn arising from XQ tends 
to g(xo) {f(xo+0) — f(xo — 0 )} . This leads us to define 

(7) CS f g<Z/ = g(*0) {/(*0 + 0) - ƒ(*<> - 0 )} , 

which may be retained when xo is a point of continuity of/. If a <x <b 
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is an open interval on a<x<&, set g' = g on a<x<b,g' = 0 elsewhere 
on a<x<fi, and define 

CS f gdf = CS f gfdf. 
J a<x<b * a<x<P 

(8) 

We further define 

CS f gdf = CS f g<Z/ + g(a) {f(a + 0) - /(a)} 

+ g(b){f(b)-f(b-0)}. 

From (7) and (8) we see that 

CS fgdf = f gdf+ f gdf+ f gdf 
Ja J a<x<b Ja J b 

only if f (a) =f(a — 0), and f{b) = / (&+0) . I t is true, however, that if c 
is a point on a < x < &, then 

CS f g # = CS fC gdf+CS f gdf. 
J a J a J c 

With the restrictions ƒ(<*+()) = 0 , / ( j8 -0) = l still holding, the 
Copeland-Stieltjes integral, CSflgdf, has now been defined for every 
interval (a, 6) on a ^ x ^ / 3 . We shall prove the following theorems. 

THEOREM I. The necessary and sufficient condition f or the existence 
of the CS-integral is that the common part of the discontinuities of g and 
the continuities off have zero measure with respect to f. 

THEOREM I I . If the CS-integral exists, the hS-integral (Lebesgue-
Stieltjes integral) exists, and the two are equal. 

THEOREM I I I . If F(x) —flgdf, then dF/df exists and is equal to g 
except for at most a set of zero measure with respect tof. 

I t is thus seen that CS-integration with respect to the monotone 
function f(x) has the same degree of generality as ordinary Riemann 
integration with respect to the variable x. In other words: If Cope-
land's definition replaces that of Riemann, it makes no difference 
whether the variable of integration is x or a monotone function ƒ(x). 

Let D = di, di, • • • be the points of discontinuity of/, and for any 
point di let (au ai) be an interval with ai<di<al and for which a* 
and ai are points of continuity of/. Let pi, q%, ri be respectively the 
number of points of the set {Xk} on ai <Xi< di, the number of times di 
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is repeated in this set, and the number of points of the set on 
di<x<a!. Then pi/n-^f(di-0) -ƒ(<*<). a/n->f(di+0) -ƒ(<*<-<>), and 
ri/n-^f(ai)—f(di+0). Thus if ai — a»- is sufficiently small and n is 
sufficiently great, the part of Gn arising from the interval (a*-, a/ ) is arbi
trarily near g(di) {f(di+0) —f(di — Q)} = CSfdi gdf. Since g is bounded 
and ƒ is bounded and non-decreasing, ^2g(di) {f(di+0) — f(di — 0)} 
converges. Also, there exists a set of nonoverlapping intervals 
A = (ai, a / ) , • • • , (a*, a / ) with ai<di<ai and such that for / suffi
ciently great and n sufficiently great we have 

00 

(9) £ M + o) - M - o)< e, 

and, on account of relations (4) and (5), the part of Gn arising from 
theintervals A differs from 

S gidi) \m + o) - f(di - o)} = £ f g# 

by not more than e. Hence the upper and lower limits of the part of 
Gn arising from the intervals A do not differ by more than 2e. 

Let e€ be the set of points of (ay j8) at which the sal tus of g is not 
less than e. Then e€ is closed, and consequently the part ei of ee which 
is not interior to A is closed. Let the common part of ee and the set 
of continuities of ƒ have zero measure with respect to ƒ. I t then fol
lows, if (9) is taken into consideration, that the closed set ei can be 
put in a finite set of nonoverlapping intervals B = (pi, b[ ) which do 
not overlap the set A, which are such that &;, bl are points of con
tinuity of ƒ, and for which 

E ( M ' ) - M ) } <2e. 
It then follows that for any n the part of Gn arising from the intervals 
B is not greater in numerical value than 2eM9 where M is the least 
upper bound of | g(x) | . 

At each point of (a, ]8) not interior to the intervals A +B the saltus 
of g is less than e. Hence the closed intervals complementary to the 
set interior to A +B can be subdivided into a finite set of intervals 
C=(d, ci) such that d, ci are points of continuity of ƒ and on 
each interval (c*, ci) the fluctuation of g is not more than €. If 
G»= {g(£ï)+ * ' ' +g(£m)}/n is the part of Gn arising from the in
terval (cif ci), then Gl

n lies between the values 

{gifii) - e} pi/n, {g(a) + e} pi/n, 
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where pi is the number of points of the sequence \xk) on d<x<cl. 
Hence as n—> oo the upper and lower limits of Gl

n do not differ by more 
than 2e { ƒ ( * ' ) - ƒ ( * ) } . We can now conclude that the least upper 
bound and greatest lower bound of 

n gtti) + ' ' ' + gtt») 
n 

do not differ by more than 2e + 2eM+2e{f(p) - ƒ ( « ) } . Since e is arbi
trary, it follows that if g(x) satisfies the conditions of Theorem I then 
the CS-integral of g with respect to the monotone function ƒ(x) exists. 

If the set of discontinuities of g has measure greater than 0 with re
spect to ƒ over the continuities of/, then for some e > 0 there exists 
d > 0 such that ^ J {ƒ(&/ ) —ƒ(&*)} >& regardless of the choice of the in
tervals (pi, &/). Consequently for every n there exist & and J/ such 
that the sums {*(&)+ • ' • + * ( & ) } / » and {«(#) + • • • + « « • ' ) } / * 
will differ by an amount which, for the fixed e in question, is not less 
than ed. From this it follows that the CS-integral of ƒ with respect 
to g does not exist, and we conclude that the conditions of Theorem I 
are necessary.4 

To obtain the LS-integral of g with respect to ƒ we proceed as fol
lows: Let (y»_i, y%) be a subdivision of the range of g. Let e* be the 
part of (a, /3) for which yi~i^g<yi, and /(e<) the image of the set 
ei by means of the transformation y=f(x), where a point Xo of dis
continuity of/corresponds to the closed interval {/(#o —0), / (#o+0)}. 
Then LSƒ£#</ƒ ==lim^y,- mf(ei) as yi — y,-_i—»0, provided this limit ex
ists. This limit does exist if g is measurable with respect to ƒ, which 
readily follows if the points of continuity of ƒ at which g is discontinu
ous have zero measure with respect t o / . If D = di> d^ • • • is the set of 
discontinuities of/, then 

LS f gdf = £ g(di) {f(di + 0) - / ( J , - 0)} = CS f gdf. 

If the intervals A = (a<, a/ ) and i? = (&»-, hi ) are properly chosen, then 
CSfAgdf is arbitrarily near to£«(<*<) {ƒ(<*<+<>) -ƒ(<*<-<>)} =LSfDgdf, 
and both CSfBgdf and hSfBgdf are less in numerical value than 2 e Af. 

4 The necessity of the conditions of Theorem I would not follow if Gn were re
stricted to the form {g(xi)-{- • • • +g(xn)}/n of Copeland's original definition. Let 
f(x)—x. The sequence {#*}, & = 1, 2, • • • , w, w = l, 2, • • • , is a denumerable set on 
(a, |8). If g(x)—0 at each point of this denumerable set, and for the rest of (a, 0) 
g(x) = 1 when x is rational and g{x) = 0 when x is irrational, then CS J agdf exists and is 
equal to zero, but g does not satisfy the conditions of Theorem I. 
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Over the set of intervals (c<, c( ) both the CS-integral and the LS-in-
tegral of g with respect to ƒ lie between ^ {g(ci) — e} {f(cl)—f(ci)} 
and 23 {g(ci) + €} {f(ci ) ~f(ci)} • From these considerations the truth 
of Theorem II readily follows. 

In proceeding with the proof of Theorem I IF we first define the 
derivative of a function F(x) with respect to a monotone function 
ƒ(*). Let 

F(x + Ax) - F(x - 0) 
\l/(x. Ax) = » 

f(x + Ax) - f(x - 0) 
f(x + Ax) - f(x - 0) ^ 0, Ax > 0, 

J F O + Ax) - F(x + 0) 

f(x + Ax) - f(x + 0) 

ƒ (a + Ax) - f(x + 0) ?* 0, Ax < 0, 

= 0 otherwise. 

If, for a fixed x, ^(x, Ax) tends to a limit as Ax—^0, then this limit is 
the derivative of F(x) with respect to f (x),dF/df. Now let F(x) =flgdf. 
If x0 is a point of discontinuity of ƒ, then, for Ax>0 , F(XQ+AX) 
— F(XQ — 0) is the limit as S—»0 of ^(xo+Ax) — F(XQ — §), and this last 
is the limit of 

g(fi-) + - • • + g(gp-) + qg(xo) + g(fc+) + • • • + g(g+) 

where £f, • • * , %f> £i+, • • • , £r+ are points on the intervals (x^_i, x*) 
formed by the sequence \Xk} on Xo—ô<x<Xo, Xo<x<Xo+Ax respec
tively, and q is the number of times Xo is repeated in this sequence. 
Then for è and Ax fixed p/n—>/(xQ — 0) — /(x0 — S+0) , g/w—>/(x0+0) 
—/(#o —0), and r/w—»/(xo+Ax —0)—/(xo+0). Hence for ô and Ax 
sufficiently small p/n and r/w are both arbitrarily near to zero. Since 
g is bounded, it then follows from (10) that for h and Ax sufficiently 
small JF(XO+AX) — F(x0 — 8) is arbitrarily near to g(x0) {/(x0+0) 
—/(tfo — O)}, and consequently ^(x0, Ax) is arbitrarily near to g(xo). 
Similarly it can be shown that for Ax<0 , \p(xo, Ax)—>g(xo). 

Next let Xo be a point of continuity of both g and / . Then F(xo+Ax) 
— F(xo — ô) is the limit of a sum of the form 

gQo) + / ! + • • • + g(qgp) + /p 

where |/<| < e if ö and Ax are sufficiently small, and p/n—^f(xo + Ax — 0) 
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—f(xo— ô+O). Hence for 5 and Ax sufficiently small, and n sufficiently-
great 

lK*o, àx) = g(x0) + t{f(x0 + Ax - 0) - f(x0 - Ô + 0)} 

where /—*0 as Ax and 5—»0. We conclude therefore that, for A#>0 , 
^(xo, Ax)—>g(xo). Similarly it can be shown that, for Ax<0, yp(x, Ax) 
—>g(#o). Hence, at x0, dF/df=g(xo)} and Theorem III is established. 

We note that the definition of dF/df given above implies the 
existence of F(x — 0) and F(x+0), which can easily be shown if 
F(x) = CSfagdf. Furthermore, at points of discontinuity of F(x) or 
of f(x) the value of the derivative does not depend on the value of 
these functions at the point. 

The next considerations are the removal of the restrictions 
f(a+0) = 0, /(j8 — 0) = 1, and the equivalence of the original and the 
modified definition. As to the first of these, it can be done, following 
Copeland, by setting 

f(x) - ƒ(* + 0) 
ó(x) = 

/OS - 0) - f(a + 0) 
and denning 

(11) CS f gdf=Cs( gd*-[f(0-O)-f{a + O)]. 

I t is possible, however, and perhaps advisable, to forego this restric
tion from the s tar t : In (3) let Xk be the greatest lower bound of num
bers x for which 

ƒ(* - 0) £ f(a + 0) + (k/n) {ƒ(£ - 0) - ƒ(« + 0)} ^ ƒ(* + 0), 

and define 

,10, „ f ,, r g(fc) + g(60 + - • - + g(fc) 
(12) CS I g J / = lim ; 

where £* is chosen as above, and l/<r» = {ƒ(/? — 0)—/(a+O) }/w. If 
I/o-» replaces l / # in the foregoing discussions, all the results hold 
without further change in the wording. When f(a+0)=0 and 
/(j8 —0) = 1, (12) reduces to (6); and when these restrictions do not 
hold, it can be shown that (11) and (12) are equivalent. The proof of 
this we leave to the reader. 

As to the equivalence of the modified form and the original form, 
if the integral exists under the first it does under the second. For the 
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part contributed by the discontinuities of ƒ is the same; on the inter
vals (ci, ci ) both integrals lie between the values 

(13) £ g(ct) {fid ) - f{ci)} -eK, £ g(a) {f{d ) - f (a) } +eK, 

where K =ƒ (j8) •—ƒ (a). These considerations easily lead to the equality 
of the two. That the integral can exist under the original form and 
not under the modified form is shown by the example in the footnote 
above. The set5 x\\ x2f Xz\ x^ x$, #«; • • • on which the original defini
tion is based is such that for any n the first n points are not arranged 
in increasing order of magnitude. But obviously these can be rear
ranged into a non-decreasing set {#&}, and on (xk-i, Xk) the £& can be 
chosen as above. Then 

g({l) + . . . + g(fn) 
l im 
W->oo ft 

leads to an integral which is equivalent to that arising from the modi
fied definition given in this paper. For the results and proof of Theo
rem I are the same; the part of each arising from the discontinuities 
of ƒ is the same; furthermore, on the intervals (d, c() both integrals 
lie between the bounds given by (13). 

Thus, if we get away from an integral which depends only on the 
values of g over a denumerable set, the sequence of sets given by (3) 
leads to the same result as the set Xi\ x2y xs; - - - on which the original 
definition is based. The sequence given by (3) is more simply defined; 
the two are equivalent with respect to properties (4) and (5), but for 
that given by (3) these properties are more easily established. 

In correspondence Copeland has stated that he had in mind statis
tical considerations when he developed the original definition. "These 
numbers," that is, the set x\\ x2j x3; • • • , "can be interpreted as a 
sequence of measurements of some physical quantity. The expression 
f(b+0) — f(a+0) is interpreted as the probability that a measure-, 
ment Xk will lie in the interval a<x^b. This probability is defined 
as the limit of the success ratio, that is, as the average number of 
points lying in the interval. If a person is to receive g(x) dollars when 
the measurement turns out to be x, then the expected amount which 
he will receive is the limit of the average of his receipts. This limit is 
the integral fagdf." Whatever the utilitarian background of the idea, 
a Stieltjes integral of the Riemann type applicable without modifica
tion to such a wide range of functions is interesting for its own sake. 
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5 This Bulletin, loc. cit., p . 582. 


