THE MINIMAL NUMBERS OF BINARY FORMS ${ }^{1}$

RUFUS OLDENBURGER AND ARTHUR PORGES

1. Introduction. One of us proved that for certain fields K a form F of degree m can be written as a linear combination of m th powers of linear forms. Such a combination is termed a representation of F and the least possible number of terms in any such representation is called the minimal number of F with respect to K. The minimal number depends on both F and K. For fields K with characteristic greater than n, and binary forms F of degree n, it has been proved ${ }^{2}$ that the minimal number ranges over at least $1,2, \cdots, n$, and at most $1,2, \cdots, n+1$, but the exact range was not determined. In the present paper the authors prove that the range is precisely $1,2, \cdots, n$.
2. Preliminary lemmas. In what follows we use identity of polynomials in the usual sense, namely polynomials P and Q are identical if the coefficients of P equal the corresponding coefficients of Q.

Since the order of a field K is greater than m if the characteristic of K is greater than m, we have the following lemma.

Lemma 1. For a field K with characteristic greater than m a polynomial P of degree m is equal to a polynomial Q for all values of the variables if and only if P and Q are identical.

An immediate consequence of Lemma 1 is the following lemma.
Lemma 2. For a field K with characteristic greater than m, a polynomial P of degree m not identically zero is different from zero for at least one set of values of the variables.

Lemma 3. Let K be a field with characteristic greater than m. Let Δ be the determinant

$$
\Delta=\left|\begin{array}{cccc}
1 & \cdots & 1 & b_{1} \tag{1}\\
a_{1} & \cdots & a_{m} & b_{2} \\
\cdot & \cdots & & \cdot \\
a_{1}^{m} & \cdots & a_{m}^{m} & b_{m+1}
\end{array}\right|
$$

of order $m+1, m \geqq 1$, with elements in K, and suppose that the b's are not all zero. The determinant Δ is not identically zero in the a's.

[^0]Lemma 3 is valid when $m=1$. For $m \geqq 2$ we have the following sequence of equalities:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccccc}
1 & 0 & \cdots & 0 & b_{1} \\
a_{1} & \left(a_{2}-a_{1}\right) & \cdots & \left(a_{m}-a_{1}\right) & b_{2} \\
a_{1}^{2} & \left(a_{2}^{2}-a_{1}^{2}\right) & \cdots\left(a_{m}^{2}-a_{1}^{2}\right) & b_{3} \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
a_{1}^{m} & \left(a_{2}^{m}-a_{1}^{m}\right) & \cdots\left(a_{m}^{m}-a_{1}^{m}\right) & b_{m+1}
\end{array}\right| \\
& =\left(a_{2}-a_{1}\right) \cdots\left(a_{m}-a_{1}\right)\left|\begin{array}{cccc}
1 & 0 & \cdots & b_{1} \\
0 & 1 & \cdots & \left(b_{2}-b_{1} a_{1}\right) \\
0 & a_{2} & \cdots a_{m} & \left(b_{3}-b_{2} a_{1}\right) \\
\cdot & \cdot & \cdots & \cdots \\
0 & a_{2}^{m-1} \cdots a_{m}^{m-1} & \left(b_{m+1}-b_{m} a_{1}\right)
\end{array}\right| .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\Delta=\left(a_{2}-a_{1}\right) \cdots\left(a_{m}-a_{1}\right)\left(M-a_{1} N\right) \tag{2}
\end{equation*}
$$

where

$$
M=\left|\begin{array}{lll}
1 & \cdots \cdot 1 & b_{2} \\
a_{2} & \cdots a_{m} & b_{3} \\
a_{2}^{2} & \cdots a_{m}^{2} & b_{4} \\
\cdot & \cdots \cdot & \cdot \\
a_{2}^{m-1} & \cdots a_{m}^{m-1} & b_{m+1}
\end{array}\right|, \quad N=\left|\begin{array}{ccc}
1 & \cdots 1 & b_{1} \\
a_{2} & \cdots a_{m} & b_{2} \\
a_{2}^{2} & \cdots a_{m}^{2} & b_{3} \\
\cdot & \cdots \cdot & \cdot \\
a_{2}^{m-1} \cdots a_{m}^{m-1} & b_{m}
\end{array}\right|
$$

The lemma now follows by induction.
It is to be remarked that if the characteristic of a field K is greater than m, each binary form of degree m with coefficients in K can be written as

$$
\begin{equation*}
b_{1} x^{m}+m b_{2} x^{m-1} y+\cdots+b_{m+1} y^{m} \tag{3}
\end{equation*}
$$

where the coefficient of $b_{i} x^{m-i+1} y^{i-1}$ is the binomial coefficient of $x^{m-i+1} y^{i-1}$ in the expansion of $(x+y)^{m}$.
3. The range of the minimal number. We proceed with the following theorem in which $I(m)$ denotes the integer

$$
\begin{equation*}
\frac{1}{2} m[m(m-1)+2] \tag{4}
\end{equation*}
$$

Theorem 1. For a field K with characteristic greater than m, and order at least $I(m)$, the minimal number of a binary form F does not exceed m.

We write F as in (4). We exclude the trivial case $F \equiv 0$. If $b_{1} \neq 0$ while $b_{i}=0$ for $i>1$, the form F is simply $b_{1} x^{m}$, whence the minimal number of F is 1 ; similarly, if $b_{m+1} \neq 0$ while $b_{i}=0$ for $i<m+1$. If $m \geqq 2$ while b_{1} and b_{m+1} are not zero, and if further $b_{i}=0$ for $i=2,3, \cdots, m$, the form F is nonsingular in the sense of Oldenburger, ${ }^{3}$ and has minimal number 2.

If F is of the first degree, the minimal number of F is clearly 1 , while if F is quadratic, the minimal number is identical ${ }^{4}$ with the rank of F and does not exceed 2.

It remains to consider forms F of degree at least 3 for which b_{2}, \cdots, b_{m} are not all zero. It is no restriction to assume that $b_{m+1} \neq 0$. For if $b_{m+1}=0$, the form F can be transformed nonsingularly into a form with this property, as is clear from the following argument. We write $F=F(x, y)$. Since $F \not \equiv 0$, there exist values a and b of x and y respectively such that $F(a, b) \neq 0$. We make the transformation

$$
x=x^{\prime}+a y^{\prime}, \quad y=x^{\prime}+b y^{\prime}
$$

on F to obtain a form $F^{\prime}\left(x^{\prime}, y^{\prime}\right)$. Evidently, $F^{\prime}(0,1)=F(a, b)$.
We consider the following equality:

$$
\begin{equation*}
b_{1} x^{m}+m b_{2} x^{m-1} y+\cdots+b_{m+1} y^{m}=\sum_{i=1}^{m} \lambda_{i}\left(x+a_{i} y\right)^{m} \tag{5}
\end{equation*}
$$

The equality (5) is identically satisfied if the λ 's and a 's are chosen so that the following system of linear equations is valid:

$$
\begin{gather*}
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}=b_{1} \\
a_{1} \lambda_{1}+a_{2} \lambda_{2}+\cdots+a_{m} \lambda_{m}=b_{2} \\
a_{1}^{2} \lambda_{1}+a_{2}^{2} \lambda_{2}+\cdots+a_{m}^{2} \lambda_{m}=b_{3} \tag{6}\\
\cdot \\
a_{1}^{m} \lambda_{1}+a_{2}^{m} \lambda_{2}+\cdots+a_{m}^{m} \lambda_{m}=b_{m+1}
\end{gather*}
$$

We shall prove that the a 's can be chosen so that the rank of the matrix of coefficients of the λ 's in (6) is m, while the rank of the augmented matrix is also m. The determinant of the augmented matrix of (6) is Δ. We write Δ as in (2).

In the expansion of M, the terms of lowest degree α in the a 's are those which have b_{m+1} as coefficient. The degree α is explicitly

[^1]$\frac{1}{2}(m-1)(m-2)$. The terms of lowest degree, in the expansion of the polynomial $a_{i} N$ for any i, are at least of degree $\alpha+1$. Thus the terms of degree α in the polynomial $M-a_{i} N$ [i in the range $2,3, \cdots, m$] arise from M only, whence $M-a_{i} N$ is not identically zero in the a 's. Thus the polynomial
\[

$$
\begin{equation*}
\left(M-a_{2} N\right) \cdots\left(M-a_{m} N\right) N \tag{7}
\end{equation*}
$$

\]

of degree at most $I(m)-1$ is not identically zero in the a 's. Evidently, $N \neq 0$ implies that a_{2}, \cdots, a_{m} are distinct. Choose a set of values of a_{2}, \cdots, a_{m} such that the polynomial (7) is different from zero. For this choice of the a 's the polynomial $M-a_{1} N$ is linear in a_{1}, and $M-a_{1} N=0$ has a solution for a_{1}, distinct from a_{2}, \cdots, a_{m}. Thus there exist mutually distinct values of $a_{1}, a_{2}, \cdots, a_{m}$, such that $\Delta=0$. Since the a 's are mutually distinct, the matrix of coefficients of the λ 's in (6) has rank m. It follows that the augmented matrix has the same rank. It is well known that a system of linear equations has a solution if and only if the matrix of coefficients and the augmented matrix have the same rank. ${ }^{5}$ Theorem 1 is now proved.

The following theorem was proved by Oldenburger. ${ }^{6}$
Theorem 2. For a field with characteristic greater than m, the minimal number of $x^{m-1} y$ is m.

If the sum $\lambda_{i} L_{i}^{m}(i=1,2, \cdots, m)$ is chosen to be a minimal representation of $x^{m-1} y$, the sum

$$
\lambda_{1} L_{1}^{m}+\cdots+\lambda_{\rho} L_{\rho}^{m}, \quad \rho \leqq m
$$

is minimal. Thus for each ρ in the range $1,2, \cdots, m$ there is a binary form of degree m with minimal number ρ. Applying Theorem 1 we have arrived at the following result.

Theorem 3. Let a field K be given as in Theorem 1. For the field K the range of the minimal numbers of binary forms of degree m is $1,2, \cdots, m$.

Armour Institute of Technology

[^2]
[^0]: ${ }^{1}$ Presented to the Society, April 13, 1940.
 ${ }^{2}$ R. Oldenburger, Polynomials in several variables, Annals of Mathematics, (2), vol. 41 (1940), no. 3, pp. 694-710.

[^1]: ${ }^{3}$ R. Oldenburger, Rational equivalence of a form to a sum of pth powers, Transactions of this Society, vol. 44 (1938), pp. 219-249.
 ${ }^{4}$ M. Bôcher, Introduction to Higher Algebra, p. 135.

[^2]: ${ }^{5}$ M. Bôcher, Introduction to Higher Algebra, p. 46.
 ${ }^{6}$ See first reference to Oldenburger above.

