ON TOPOLOGICAL COMPLETENESS¹

L. W. COHEN

Recently A. Weil² defined a uniform space as a set of points p such that for each α in a set A there is defined a set $U_{\alpha}(p) \subset S$, the class of sets $U_{\alpha}(p)$ satisfying the conditions:

I_A. $\prod_{\alpha} U_{\alpha}(p) = (p)$.

II_A. To each α , $\beta \in A$ there is a $\gamma = \gamma(\alpha, \beta) \in A$ such that $U_{\gamma}(p) \subset U_{\alpha}(p) U_{\beta}(p)$.

III_A. To each $\alpha \in A$ there is a $\beta(\alpha) \in A$ such that if $p', p'' \in U_{\beta(\alpha)}(q)$, then $p'' \in U_{\alpha}(p')$.

For the uniform space S, Weil introduced the concept of Cauchy family $\{M_{\beta}\}$ of sets. Such a family is defined by the conditions that the intersection of any finite number of sets of the family is nonempty and that to each $\alpha \in A$ there is a $p_{\alpha} \in S$ and a $\beta(\alpha)$ such that $M_{\beta(\alpha)} \subset U_{\alpha}(p_{\alpha})$. Weil gives a theory of completeness in these terms.

The writer has considered³ a space S of points p and neighborhoods $U_{\alpha}(p)$ where α is an element of a set A such that:

I. $\prod_{\alpha} U_{\alpha}(p) = (p).$

II. To each α and $\beta \in A$ and $p \in S$ there is a $\gamma = \gamma(\alpha, \beta; p)$ such that $U_{\gamma}(p) \subset U_{\alpha}(p) U_{\beta}(p)$.

III. To each $\alpha \in A$ and $p \in S$ there are $\lambda(\alpha)$, $\delta(p, \alpha) \in A$ such that, if $U_{\delta(p,\alpha)}(q) U_{\lambda(\alpha)}(p) \neq 0$, then $U_{\delta(p,\alpha)}(q) \subset U_{\alpha}(p)$.

The uniformity conditions here are lighter than those in II_A and III_A. A Cauchy sequence $p_n \in S$ was defined by the condition that for every $\alpha \in A$, n_{α} and $p_{\alpha} \in S$ exist such that $p_n \in U_{\alpha}(p_{\alpha})$ for $n \ge n_{\alpha}$. S is complete if every Cauchy sequence has a limit. It was shown that there is a complete space S* which contains a homeomorphic image of S such that the image of a Cauchy sequence in S is a convergent sequence in S*.

It is the object of this paper to show that Weil's space is a special case of the space $S_{I,II,III}$ and that the notion of Cauchy family in this space leads to the same theory of completeness as that previously developed.

THEOREM 1. If S satisfies III_A and $\beta^2(\alpha) = \beta(\beta(\alpha))$, then from $U_{\beta^2(\alpha)}(q) U_{\beta^2(\alpha)}(p) \neq 0$ follows $U_{\beta^2(\alpha)}(q) \subset U_{\alpha}(p)$.

¹ Presented to the Society, December 27, 1939.

² A. Weil, Sur les Espaces à Structure Uniforme, Paris, 1938.

⁸ L. W. Cohen, On imbedding a space in a complete space, Duke Mathematical Journal, vol. 5 (1939), pp. 174–183. Also Duke Mathematical Journal, vol. 3 (1937), pp. 610–617, where the notion of topological completeness is introduced.

PROOF. Let $s \in U_{\beta^2(\alpha)}(q) U_{\beta^2(\alpha)}(p)$. Then from $s, q' \in U_{\beta^2(\alpha)}(q)$ we have $q' \in U_{\beta(\alpha)}(s)$. Therefore $U_{\beta^2(\alpha)}(q) \subset U_{\beta(\alpha)}(s)$. Similarly $U_{\beta^2(\alpha)}(p) \subset U_{\beta(\alpha)}(s)$. Now from $p \in U_{\beta(\alpha)}(s)$ and $U_{\beta^2(\alpha)}(q) \subset U_{\beta(\alpha)}(s)$ we have $U_{\beta^2(\alpha)}(q) \subset U_{\alpha}(p)$.

COROLLARY. If S satisfies III_A , then S satisfies III.

PROOF. For any $p \in S$ and $\alpha \in A$ we need only take $\lambda(\alpha) = \delta(p, \alpha) = \beta(\beta(\alpha))$. The result is stronger than III since $\delta(p, \alpha)$ is independent of p.

From now on a space S is one satisfying I, II, III. A family of sets $\{M_{\beta}\}$ is a Cauchy family if the intersection of any finite number of M_{β} is non-empty and if for any $\alpha \in A$ there is a $\beta(\alpha)$ such that $M_{\beta(\alpha)} \subset U_{\alpha}(p_{\alpha})$ for some $p_{\alpha} \in S$. We will say that S is W-complete if, for every Cauchy family $\{M_{\beta}\}, \prod_{\beta} \overline{M}_{\beta} \neq 0$, where \overline{M}_{β} is the closure of M_{β} . We shall always use the notations $\lambda(\alpha)$, $\delta(p, \alpha)$ in the sense of III.

THEOREM 2. S is W-complete if and only if every Cauchy family $\{U_{\alpha}(p_{\alpha})\}$ consisting of one $U_{\alpha}(p_{\alpha})$ for each $\alpha \in A$ has the property that $\prod_{\alpha} U_{\alpha}(p_{\lambda(\alpha)}) \neq 0$.

PROOF. Assume S is W-complete. If $\{U_{\alpha}(p_{\alpha})\}$ is a Cauchy family, then $\prod_{\alpha} \overline{U}_{\lambda(\alpha)}(p_{\lambda(\alpha)}) \neq 0$. Since $\overline{U}_{\lambda(\alpha)}(p) \subset U_{\alpha}(p)$ follows from III, the condition $\prod_{\alpha} U_{\alpha}(p_{\lambda(\alpha)}) \neq 0$ is necessary. Assume now that the condition is satisfied and let $\{M_{\beta}\}$ be a Cauchy family in S. To each $\alpha \in A$ there are $p_{\alpha} \in S$ and $M_{\beta(\alpha)}$ such that $M_{\beta(\alpha)} \subset U_{\alpha}(p_{\alpha})$. It is clear that $\{U_{\alpha}(p_{\alpha})\}$ is a Cauchy family. Hence there is $p \in \prod_{\alpha} U_{\alpha}(p_{\lambda(\alpha)})$. For any $\gamma \in A$, consider the $\lambda(\gamma)$ and $\alpha = \delta(p, \gamma)$ of III. Since $p \in U_{\alpha}(p_{\lambda(\alpha)}) U_{\lambda(\gamma)}(p)$, $U_{\alpha}(p_{\lambda(\alpha)}) \subset U_{\gamma}(p)$ and

$$M_{\beta(\lambda(\alpha))} \subset U_{\lambda(\alpha)}(p_{\lambda(\alpha)}) \subset U_{\alpha}(p_{\lambda(\alpha)}) \subset U_{\gamma}(p).$$

Hence

$$0 \neq M_{\beta}M_{\beta(\lambda(\alpha))} \subset M_{\beta}U_{\gamma}(p)$$

for all β , γ . Thus $p \in \prod_{\beta} \overline{M}_{\beta}$ and S is W-complete.

The space S^* referred to above is defined as follows. A family $\{U_{\alpha}(p_{\alpha})\}$, one for each $\alpha \in A$, such that for any $(\alpha_1, \dots, \alpha_n) \subset A$, $U_{\alpha_1}(p_{\alpha_1}) \cup U_{\alpha_2}(p_{\alpha_2}) \cdots \cup U_{\alpha_n}(p_{\alpha_n}) \neq 0$ is denoted by Π . We write $\Pi' \sim \Pi''$ if for every $\alpha \in A$ there is a set $(\alpha_1, \dots, \alpha_n) \subset A$ such that for some $p_{\alpha} \in S$

$$\prod_{i=1}^n U_{\alpha_i}(p'_{\alpha_i}) + \prod_{i=1}^n U_{\alpha_i}(p''_{\alpha_i}) \subset U_{\alpha}(p_{\alpha}).$$

L. W. COHEN

The relation $\Pi' \sim \Pi''$ classifies all Π into mutually exclusive classes $C(\Pi)$ which are the points P of S^* . The neighborhoods $U^*_{\alpha_1,\ldots,\alpha_n}(P)$ are made up of all $Q = C(\Pi^Q) \in S^*$ where $\Pi^Q = \{ U_\alpha(q_\alpha) \}$ is such that for some $\beta_i = \beta_i(\alpha_1, \cdots, \alpha_n; P), i = 1, \cdots, m = m(\alpha_1, \cdots, \alpha_n; P),$

$$\prod_{i=1}^m U_{\beta_i}(q_{\beta_i}) \subset \prod_{i=1}^n U_{\alpha_i}(p_{\alpha_i}).$$

The space S^* (for which A^* is the set of all finite subsets of A) satisfies I, II and

III*. For each $(\alpha_1, \dots, \alpha_n) \subset A$ and for $P \in S^*$ there exist $\gamma_i = \gamma_i(\alpha_1, \dots, \alpha_n; P), i = 1, \dots, m = m(\alpha_1, \dots, \alpha_n; P)$, such that if $U^*_{\gamma_1 \dots \gamma_m}(Q) U^*_{\gamma_1 \dots \gamma_m}(P) \neq 0$, then $U^*_{\gamma_1 \dots \gamma_m}(Q) \subset U^*_{\alpha_1 \dots \alpha_n}(P)$. The mapping $f(p) = C(\Pi^p)$, where $\Pi^p = \{ U_\alpha(p) \}$, is the homeomor-

The mapping $f(p) = C(\prod^p)$, where $\prod^p = \{ U_{\alpha}(p) \}$, is the homeomorphism on *S* to a subset of *S*^{*} referred to above.

THEOREM 3. S* is W-complete.

PROOF. We first show that if $\{U^*_{\alpha_1\cdots\alpha_n}(P^{\alpha_1\cdots\alpha_n})\}$, where each $(\alpha_1, \cdots, \alpha_n) \subset A$ occurs just once, is a Cauchy family in S^* , then

$$\prod_{(\alpha_1\cdots\alpha_n)\in A}\overline{U^*_{\alpha_1}\cdots\alpha_n}(p^{\alpha_1\cdots\alpha_n})\neq 0.$$

Consider the $U_{\alpha}^{*}(P^{\alpha})$ for all $\alpha \in A$. Now $P^{\alpha} = C(\Pi^{P^{\alpha}}), \Pi^{P^{\alpha}} = \{ U_{\gamma}(p_{\gamma}^{\alpha}) \}, U_{\gamma}(p_{\gamma}^{\alpha})$ being a neighborhood in *S* for each $(\alpha, \gamma) \subset A$. Since, for each $(\alpha_{1}, \cdots, \alpha_{n}) \subset A, \prod_{i=1}^{n} U_{\alpha_{i}}^{*}(P^{\alpha_{i}}) \neq 0$, we have

$$\prod_{i=1}^{n} U_{\alpha_i}(p_{\alpha_i}^{\alpha_i}) \neq 0.$$

Hence the family $\Pi = \{ U_{\alpha}(p_{\alpha}^{\alpha}) \}$ defines a $P = C(\Pi) \in S^*$. For any $(\gamma_1, \dots, \gamma_m) \subset A$

$$\prod_{i=1}^m U^*_{\gamma_i}(P) = U^*_{\gamma_1\cdots\gamma_m}(P).$$

Both $U_{\gamma_i}^*(P)$ and $U_{\gamma_i}^*(P^{\gamma_i})$ are the set of all $Q = C(\Pi^Q)$, $\Pi^Q = \{ U_\beta(q_\beta) \}$ such that for some $\beta_{ji} = \beta_j(\gamma_i), j = 1, \cdots, k_i, \prod_{j=1}^{k_i} U_{\beta_{ji}}(q_{\beta_{ji}}) \subset U_{\gamma_i}(p_{\gamma_i}^{\gamma_i})$. Hence

$$U_{\gamma_i}^*(P) = U_{\gamma_i}^*(P^{\gamma_i}), \qquad U_{\gamma_1\cdots\gamma_m}^*(P) = \prod_{i=1}^m U_{\gamma_i}^*(P^{\gamma_i}).$$

Thus from the fact that $\{U_{\alpha_1}^* \ldots _{\alpha_n}(P^{\alpha_1} \cdots _{\alpha_n})\}$ is a Cauchy family we have for any sets $(\alpha_1, \cdots, \alpha_n), (\gamma_1, \cdots, \gamma_m) \subset A$

[August

708

$$U^*_{\alpha_1\cdots\alpha_n}(P^{\alpha_1\cdots\alpha_n})U^*_{\gamma_1\cdots\gamma_m}(P) = U^*_{\alpha_1\cdots\alpha_n}(P^{\alpha_1\cdots\alpha_n})\prod_{i=1}^m U^*_{\gamma_i}(P^{\gamma_i}) \neq 0$$

It follows that

(1)
$$P \mathfrak{e} \prod_{(\alpha_1 \cdots \alpha_n) \in A} \overline{U^*_{\alpha_1 \cdots \alpha_n}}(P^{\alpha_1 \cdots \alpha_n}).$$

Now suppose that $\{M_{\beta}^*\}$ is a Cauchy family of sets in S^* . For every $(\gamma_1, \dots, \gamma_n) \subset A$ there is a $\beta(\gamma_1, \dots, \gamma_n)$ such that for some $P^{\gamma_1 \dots \gamma_n} \varepsilon S^*, M^*_{\beta(\gamma_1 \dots \gamma_n)} \subset U^*_{\gamma_1 \dots \gamma_n}(P^{\gamma_1 \dots \gamma_n})$. Thus

$$0 \neq \prod_{i=1}^{m} M^{*}_{\beta(\gamma_{1}, \dots, \gamma_{n_{i}}^{i})} \mathsf{C} \prod_{i=1}^{m} U^{*}_{\gamma_{1}, \dots, \gamma_{n_{i}}^{i}}(P^{\gamma_{1}^{i}, \dots, \gamma_{n_{i}}^{i}})$$

for every finite set $(\gamma_1^i, \dots, \gamma_{n_i}^i) \in A$ and $\{U_{\gamma_1 \dots \gamma_n}^*(P^{\gamma_1 \dots \gamma_n})\}$ is a Cauchy family. Let $P \in S^*$ satisfy (1). For any $(\alpha_1, \dots, \alpha_n) \in A$ and $P \in S^*$ let $(\gamma_1, \dots, \gamma_m) \in A$ be the set of $\gamma_i = \gamma_i(\alpha_1, \dots, \alpha_n; P)$ satisfying III*. From III* and (1)

$$U^*_{\gamma_1\cdots\gamma_m}(P^{\gamma_1\cdots\gamma_m}) \subset U^*_{\alpha_1\cdots\alpha_n}(P).$$

Since $\{M_{\beta}^*\}$ is a Cauchy family, for any β and $(\alpha_1, \dots, \alpha_n) \subset A$ we have

$$0 \neq M^*_{\beta} M^*_{\beta(\gamma_1, \dots, \gamma_m)} \subset M^*_{\beta(\gamma_1, \dots, \gamma_m)} \subset U^*_{\gamma_1 \dots \gamma_m}(P^{\gamma_1 \dots \gamma_m}) \subset U^*_{\alpha_1 \dots \alpha_n}(P),$$
$$M^*_{\beta} U^*_{\alpha_1 \dots \alpha_n}(P) \neq 0.$$

Hence $P \in \prod_{\beta} \overline{M_{\beta}^*}$ and S^* is W-complete.

THEOREM 4. If $\{M_{\beta}\}$ is a Cauchy family in S and $f(S) \subset S^*$ is the homeomorphism defined above, then there is a $P \in S^*$ such that

1. $\prod_{\beta} f(M_{\beta}) = (P),$

2. for any $(\alpha_1, \cdots, \alpha_n) \subset A$ there are β_1, \cdots, β_m such that

$$\prod_{i=1}^m f(M_{\beta_i}) \subset U^*_{\alpha_1 \cdots \alpha_n}(P)$$

PROOF. $f(M_{\beta})$ is the class of $P = C(\Pi^{p})$ for all $p \in M_{\beta}$ where for any $(\alpha_{1}, \dots, \alpha_{n}) \subset A$ and $\lambda(\alpha_{i})$ there are $\beta(\lambda(\alpha_{i}))$ and $p_{\lambda(\alpha_{i})}$ such that

$$M_{\beta(\lambda(\alpha_i))} \subset U_{\lambda(\alpha_i)}(p_{\lambda(\alpha_i)}) \subset U_{\alpha_i}(p_{\lambda(\alpha_i)})$$
$$0 \neq \prod_{i=1}^n M_{\beta(\lambda(\alpha_i))} \subset \prod_{i=1}^n U_{\alpha_i}(p_{\lambda(\alpha_i)}).$$

If $q \in \prod_{i=1}^{n} M_{\beta(\lambda(\alpha_{i}))}$, then for $\delta_{i} = \delta(p_{\lambda(\alpha_{i})}, \alpha_{i})$ we have $q \in U_{\delta_{i}}(q) U_{\lambda(\alpha_{i})}(p_{\lambda(\alpha_{i})}), \qquad U_{\delta_{i}}(q) \subset U_{\alpha_{i}}(p_{\lambda(\alpha_{i})}), \qquad i = 1, 2, \cdots, n.$

709

1940]

Since

$$q \in \prod_{i=1}^n U_{\delta_i}(q) \subset \prod_{i=1}^n U_{\alpha_i}(p_{\lambda(\alpha_i)}),$$

the family $\{U_{\alpha}(p_{\lambda(\alpha)})\} = \Pi$ defines a $P = C(\Pi) \in S^*$ such that

$$f(q) \in U^*_{\delta_1 \cdots \delta_n}(f(q)) \subset U^*_{\alpha_1 \cdots \alpha_n}(P).$$

Hence for such $(\alpha_1, \dots, \alpha_n) \subset A$ there are $P^{\alpha_1 \dots \alpha_n} = P$ and $\beta_i = \beta(\lambda(\alpha_i)), i = 1, \dots, n$, such that

$$0 \neq \prod_{i=1}^n f(M_{\beta(\lambda(\alpha_i))}) \subset U^*_{\alpha_1 \cdots \alpha_n}(P).$$

Thus the family of all finite products $\{f(M_{\beta_1}) \cdots f(M_{\beta_n})\}$ is a Cauchy family in S^* since $f(M_{\beta_1}) \cdots f(M_{\beta_n}) = f(M_{\beta_1} \cdots M_{\beta_n}) \neq 0$. We have

$$U^*_{\alpha_1\cdots\alpha_n}(P)f(M_\beta) \supset \prod_{i=1}^n f(M_{\beta(\lambda(\alpha_i))})f(M_\beta) \neq 0$$

for all β and all $(\alpha_1, \cdots, \alpha_n) \subset A$. In other words

$$P \mathrel{\mathfrak{e}} \prod_{\beta} \overline{f(M_{\beta})} \,.$$

But the intersection of all $\overline{f(M_{\beta})}$ is *P*, for if *P'* is any other point there are sets $(\alpha_1, \dots, \alpha_n), (\alpha'_1, \dots, \alpha'_{n'}) \subset A$ such that

$$U^{*'}_{\alpha_1\cdots\alpha_n}(P)U^{*'}_{\alpha_1\cdots\alpha_n}(P')=0$$

and

$$P' \, \mathfrak{e} \, S^* - \, \overline{U^*_{\alpha_1} \cdots \alpha_n}(P) \, \mathsf{c} \, S^* - \, \prod_{i=1}^n \overline{f(M_{\beta(\lambda(\alpha_i))})} \, \mathsf{c} \, S^* - \, \prod_{\beta} \, \overline{f(M_{\beta})}.$$

We conclude with the remark that if S is W-complete, S is complete. Suppose p_n is a Cauchy sequence in S. Let $M_n = (p_n, p_{n+1}, \cdots)$. Then the intersection of any finite set of M_n is non-empty and for any $\alpha \in A$ there is an $n(\alpha)$ such that $M_{n(\alpha)} \subset U_{\alpha}(p_{\alpha})$ for some $p_{\alpha} \in S$. Thus $\{M_n\}$ is a Cauchy family. S being W-complete, there is a $p \in \prod_n \overline{M}_n$. Now for p, any $\alpha \in A$, $\lambda(\alpha)$ and $\delta = \delta(p, \alpha)$, we have

$$M_{n(\delta)} \subset U_{\delta}(p_{\delta}), \qquad 0 \neq U_{\lambda(\alpha)}(p) M_{n(\delta)} \subset U_{\lambda(\alpha)}(p) U_{\delta}(p_{\delta}),$$

 $M_{n(\delta)} \subset U_{\delta}(p_{\delta}) \subset U_{\alpha}(p), \quad p_n \in U_{\alpha}(p), \quad n \ge n(\delta) = n(\delta(p, \alpha)), \quad \lim p_n = p.$

University of Kentucky

710