CLOSURE OF PRODUCTS OF FUNCTIONS¹

D. G. BOURGIN

This note presents some natural theorems on the characterizations of certain closed (*or complete*) sets of functions with separable variables. In order to motivate the developments of the paper we treat a simple case first in elaborate detail. The proof is so formulated that it holds with trifling modifications for the more general situations in Theorems 3 and 4. The result in Theorem 5 belongs to a slightly different range of ideas.

Let $s \sim (s_1, \dots, s_m)$ and $t \sim (t_1, \dots, t_n)$ here stand for points in the euclidean spaces R_m and R_n . The term "interval" designates the generalized rectangular parallelopipedon open on the left.² We shall make use of the intervals $I_s \subset R_m$, $I_t \subset R_n$ and $I_2 = I_s \times I_t \subset R_{n+m}$. We are first interested in $L_2(I)$, the space of complex valued functions of summable square over I. The norm and scalar product are defined as usual by

(1)
$$||f(s, t) - g(s, t)|| = \left[\int_{I_t} \int_{I_s} |f(s, t) - g(s, t)|^2 dI_s dI_t\right]^{1/2}$$

(2)
$$(f(s, t), g(s, t)) = \int_{I_t} \int_{I_s} f(s, t) \bar{g}(s, t) dI_s dI_t,$$

where $\bar{g}(s, t)$ is the conjugate of g(s, t). The subscript I_s or I_t will indicate that the left-hand functionals are on the corresponding intervals.

We shall understand closure of the sequence of functions³ $\{\phi_{\gamma}(t)\psi_{\mu}(s)\}, \gamma; \mu=0, 1, \cdots$, to mean that for every $f(s, t) \in L_2(I_2)$ and arbitrary $\epsilon > 0$ there exists a finite sequence of complex constants $\{\beta_{\gamma\mu}\}$ and integers A and B such that

(3)
$$\left\|f(s, t) - \sum_{0}^{A} \sum_{0}^{B} \beta_{\gamma \mu} \phi_{\gamma}(t) \psi_{\mu}(s)\right\| < \epsilon.$$

It is well known that with the adjunction of the scalar product defined in (2), $L_2(I_2)$ is a complex Hilbert space and that closure and completeness are equivalent concepts.

THEOREM 1. If $\{\phi_{\gamma}(t)\psi_{\mu}(s)\}$, γ , $\mu = 0, 1, \cdots$, is a sequence of com-

¹ Presented to the Society, December 2, 1939.

² S. Saks, Theory of the Integral, English edition, p. 57.

³ Curly brackets, {}, will always denote sequences.

plex valued functions in $L_2(I_2)$, then a necessary and sufficient⁴ condition for closure is that $\{\phi_{\gamma}(t)\}$ and $\{\psi_{\mu}(s)\}$ be closed in the spaces $L_2(I_i)$ and $L_2(I_s)$ respectively.

We deal with the sufficiency demonstration first. Suppose the denumerable set of all subintervals, with rational end points, of I_t to be ordered according to 0, 1, 2, \cdots . We designate by $h_{\rho}(t)$ the characteristic function⁵ of the ρ th subinterval divided by its norm. The function $g_{\nu}(s)$ is similarly defined for the range I_s . Thus

(4)
$$||h_{\rho}(t)||_{I_t} = ||g_{\nu}(s)||_{I_s} = 1.$$

It is well known that $\{h_{\rho}(t)g_{\nu}(s)\}, \rho, \nu=0, 1, \cdots$, has the closure property in $L_2(I_2)$. Hence for $f(s, t) \in L_2(I_2)$ and arbitrary $\epsilon > 0$ we can find integers M and N and MN complex constants $\{a_{\rho\nu}\}$ such that

(5)
$$\left\| f(s,t) - \sum_{0}^{M} \sum_{0}^{N} a_{\rho\nu} h_{\rho}(t) g_{\nu}(s) \right\| < \epsilon/2.$$

Let

(6)
$$\delta \leq \min\left(\frac{\epsilon}{4MN}\max \mid a_{\rho\nu} \mid, 1\right).$$

Thus

(6.1)
$$2\delta \sum_{0}^{M} \sum_{0}^{N} \left| a_{\rho\nu} \right| < \epsilon/2.$$

In view of the assumed closure properties of $\{\phi_{\gamma}(t)\}\$ and $\{\psi_{\mu}(s)\}\$, integers A and B and complex constants $\{d_{\mu}^{(\nu)}\}, \{e_{\gamma}^{(\nu)}\}, \rho = 0, 1, \cdots, M$ and $\nu = 0, 1, \cdots, N$, exist which yield the simultaneous inequalities

(7)
$$\left\| g_{\nu}(s) - \sum_{\mu=0}^{B} d_{\mu}^{(\nu)} \psi_{\mu}(s) \right\|_{I} < \delta/2,$$

(7.1)
$$\left\|h_{\rho}(t) - \sum_{0}^{A} e_{\gamma}^{(\rho)} \phi_{\gamma}(t)\right\|_{I_{t}} < \delta/2.$$

Hence

⁴ A special case amounting to the assertion of sufficiency, only, for the subspace of $L_2(I_2)$ composed of real continuous functions, when $\{\phi_{\gamma}(t)\}$ and $\{\psi_{\mu}(s)\}$ are restricted to be orthogonal sets of functions, has been given by Courant: Courant-Hilbert, *Methoden der mathematischen Physik*, vol. 1, 1st edition, p. 90. Another special sufficiency proof is given in A. Zymund, *Trigonometrical Series*, p. 13.

⁵ Saks, loc. cit., p. 6.

(7.2)
$$\left\|\sum_{0}^{B} d_{\mu}^{(\nu)} \psi_{\mu}(s)\right\|_{I_{\bullet}} \leq \left\|g_{\nu}(s)\right\|_{I_{t}} + \left\|g_{\nu}(s) - \sum_{0}^{B} d_{\mu}^{(\nu)} \psi_{\mu}(s)\right\|_{I_{\bullet}} \leq 2.$$

Let $\beta_{\gamma\mu} = \sum_{\rho=0}^{M} \sum_{\nu=0}^{N} a_{\rho\nu} e_{\gamma}^{(\rho)} d_{\mu}^{(\nu)}$. The triangle inequality for norms yields, in view of (6), (7), (7.11), and (7.2)

$$\| h_{\rho}(t)g_{\nu}(s) - \sum_{0}^{A} \sum_{0}^{B} e_{\gamma}^{(\rho)} d_{\mu}^{(\nu)} \phi_{\gamma}(t)\psi_{\mu}(s) \| \\ \leq \| h_{\rho}(t) \left(g_{\nu}(s) - \sum_{0}^{B} d_{\mu}^{(\nu)} \psi_{\mu}(s) \right) \| \\ + \| \sum_{0}^{B} d_{\mu}^{(\nu)} \psi_{\mu}(s) \left(h_{\rho}(t) - \sum_{0}^{A} e_{\gamma}^{(\rho)} \phi_{\gamma}(t) \right) \| \\ \leq \| h_{\rho}(t) \|_{I_{t}} \| g_{\nu}(s) - \sum_{0}^{B} d_{\mu}^{(\nu)} \psi_{\mu}(s) \|_{I_{s}} \\ + \| \sum_{0}^{B} d_{\mu}^{(\nu)} \psi_{\mu}(s) \|_{I_{s}} \| h_{\rho}(t) - \sum_{0}^{A} e_{\gamma}^{(\rho)} \phi_{\gamma}(t) \|_{I_{t}} \\ \leq 2\delta, \qquad \text{for } \rho = 0, 1, \cdots, M, \nu = 0, 1, \cdots, N.$$

On combining the various inequalities above

$$\begin{split} \left\| f(s, t) - \sum_{0}^{A} \sum_{0}^{B} \beta_{\gamma\mu} \phi_{\gamma}(t) \psi_{\mu}(s) \right\| \\ &\leq \left\| f(s, t) - \sum_{0}^{M} \sum_{0}^{N} a_{\rho\nu} h_{\rho}(t) g_{\nu}(s) \right\| \\ (9) + \left\| \sum_{0}^{M} \sum_{0}^{N} a_{\rho\nu} \left(h_{\rho}(t) g_{\nu}(s) - \sum_{0}^{A} \sum_{0}^{B} e_{\gamma}^{\rho} d_{\mu}^{\nu} \phi_{\gamma}(t) \psi_{\mu}(s) \right) \right\| \\ &\leq \epsilon/2 + \sum_{0}^{M} \sum_{0}^{N} \left(\left| a_{\rho\nu} \right| \left\| h_{\rho}(t) g_{\nu}(s) - \sum_{0}^{A} \sum_{0}^{B} e_{\gamma}^{(\rho)} d_{\mu}^{(\nu)} \phi_{\gamma}(t) \psi_{\mu}(s) \right\| \right) \\ &\leq \epsilon/2 + 2\delta \sum_{0}^{M} \sum_{0}^{N} \left| a_{\rho\nu} \right| \leq \epsilon. \end{split}$$

This asserts the closure property for $\{\phi_{\gamma}(t)\psi_{\mu}(s)\}$.

The necessity demonstration is equally direct. A trivial application of Fubini's theorem indicates that $\phi_{\gamma}(t) \in L_2(I_t)$, $\psi_{\mu}(s) \in L_2(I_s)$ when $\phi_{\gamma}(t)\psi_{\mu}(s) \in L_2(I_2)$. No generality is lost if we assume that $\{\psi_{\mu}(s)\}$ is a linearly independent set of functions. Suppose $\{\psi_{\mu}(s)\}$ does not have the closure property. Then $f(s) \in L_2(I_s)$ exists for which for all R and b_{μ}

D. G. BOURGIN

(10) G.L.B.
$$\left\| f(s) - \sum_{0}^{R} b_{\mu} \psi_{\mu}(s) \right\|_{I_{\bullet}} = c > 0, \quad b_{\mu} = b_{\mu}' + i b_{\mu}''.$$

A fundamental result of Riesz guarantees the existence of minimal constants, $\{b_{\mu}^{R}\}$, such that for $b_{\mu} \neq b_{\mu}^{R}$, $\mu \leq R$,

(11)
$$\left\| f(s) - \sum_{0}^{R} b_{\mu}^{R} \psi_{\mu}(s) \right\|_{I_{s}} \leq \left\| f(s) - \sum_{0}^{R} b_{\mu} \psi_{\mu}(s) \right\|_{I_{s}}$$

The corresponding minimal constants for Af(s) are evidently $\{A b^{R}_{\mu}\}$. Hence⁷

(12)
$$\left\|F(t)f(s) - \sum_{0}^{R} \bar{b}_{\mu}^{R}F(t)\psi_{\mu}(s)\right\|_{I_{s}} \leq \left\|F(t)f(s) - \sum_{0}^{R} \bar{b}_{\mu}(t)\psi_{\mu}(s)\right\|_{I_{s}}, t \in I_{t},$$

when $F(t) \ge L_2(I_t)$ is a fixed function of positive norm. We write

(13)
$$b_{\mu}(t) = \sum_{0}^{Q} a_{\gamma\mu}\phi_{\gamma}(t), \qquad Q < \infty.$$

In view of (12) we have

$$0 < c ||F(t)||_{I_{t}} \leq \left\| f(s)F(t) - \sum_{0}^{R} b_{\mu}^{R}F(t)\psi_{\mu}(s) \right\|$$

$$= \left[\int_{I_{t}} \left\| f(s)F(t) - \sum_{0}^{R} b_{\mu}^{R}F(t)\psi_{\mu}(s) \right\|_{I_{s}}^{2} dI_{t} \right]^{1/2}$$

$$\leq \left[\int_{I_{t}} \left\| f(s)F(t) - \sum_{0}^{R} \sum_{0}^{Q} a_{\gamma\mu}\phi_{\gamma}(t)\psi_{\mu}(s) \right\|_{I_{s}}^{2} dI_{t} \right]^{1/2}$$

$$= \left\| f(s)F(t) - \sum_{0}^{R} \sum_{0}^{Q} a_{\gamma\mu}\phi_{\gamma}(t)\psi_{\mu}(s) \right\|.$$

Since (14) is in contradiction with the assumed closure property of $\{\phi_{\gamma}(t)\psi_{\mu}(s)\}$ our necessity proof is complete.

We denote by $h'_{\rho}(t)$ and $g'_{\nu}(s)$ the step functions in R_n and R_m analogous to $h_{\rho}(t)$ and $g_{\nu}(s)$. According to a classical result, $\{h'_{\rho}(t)g'_{\nu}(s)\}$, ρ , $\nu = 0, 1, \dots$, have the closure property in $L_2(E_2)$ when the s, t integration is over R_{n+m} or any Lebesgue measurable subset E_2 . Accordingly Theorem 1 and its demonstration remain formally valid in detail when I_s , I_t and I_2 are replaced either by R_n , R_m and R_{n+m} or by

810

[October

⁶ F. Riesz, Acta Mathematica, vol. 41 (1916), p. 77, Lemma 3.

^{&#}x27; With the choice F(t)f(s), the method of proof of the necessity condition remains valid when sets of infinite measure are included.

the sets E_s , E_t and $E_2 = E_s \times E_t$ of finite or infinite Lebesgue measure.

THEOREM 2. If $\{F_{\rho}(s, t)\}$, $\rho = 0, 1, \cdots$, is closed in $L_2(E_2)$, then the sequence is also closed in $L_2(E_s)$ except possibly for a t set of zero measure.⁸

Suppose a lower bound of approximation to $f(s) \in L_2(E_s)$, by linear combinations of $\{F_{\rho}(s, t)\}$, is $c(t) \in L_2(E_t)$, where $\infty > c(t) > 0$ for $t \in G \subset E_t$. Let $F(t) \in L_2(E_t)$ differ from 0 on G (say F(t) = c(t)). The analogue of (14) is

(14')
$$||c(t)F(t)||_G \leq ||c(t)F(t)||_{E_t} \leq ||f(s)F(t) - \sum_{0}^{R} b_{\mu}F_{\mu}(s, t)||.$$

Hence G has zero measure. Let $\{f^{(\sigma)}(s)\}$ be closed in $L_2(E_s)$ and denote the corresponding G sets, defined above, by $\{G^{\sigma}\}$. The denumerable sum $\mathfrak{S}G^{\sigma}$ is plainly of measure zero. Thus $\{F_{\rho}(s, t)\}$ is closed in $L_2(E_s)$ for all $t \in E_t - \mathfrak{S}G^{\sigma}$.

We now abstract the properties needed in the foregoing proofs. Let T(E) denote a Banach space⁹ of real functions on E. A set G, $G \subset E$, will be called a *non-significant* set if $f(z) \in T(E)$ may be arbitrarily changed on G without affecting the value of $||f(z)||_E$. The postulates below hold for T(E). When (d) and (e) are omitted we write $T_{-}(E)$.

(a) If $f(s, t) \in T(E_2)$ then $f(s, t) \in T(E_s)$ and $f(s, t) \in T(E_t)$ for all save a non-significant set of t or s values respectively. If $f(s) \in T(E_s)$, $F(t) \in T(E_t)$ then $f(s)F(t) \in T(E_2)$.

(b) $||f(s,t)||_{E_2} = || ||f(s,t)||_{E_s} ||_{E_t}$.

(c) If, neglecting non-significant sets, $|f_1(t)| > |f_2(t)|$, then $||f_1(t)||_{E_t} > ||f_2(t)||_{E_t}$.

(d) There exists a sequence $\{h_{\rho}(t)g_{\nu}(s)\}$, ρ , $\nu = 0, 1, \cdots$, with the closure property in $T(E_2)$, where $h_{\rho}(t) \in T(E_t)$ and $g_{\nu}(s) \in T(E_s)$.

(e) Denumerable sums of non-significant sets are non-significant sets.

⁸ A sharper result follows from Fatou's lemma. Suppose $F(t) \in L_2(E_t)$ differs from 0 for almost all $t \in E_t$. Now

$$0 = \mathcal{L}_{N \to \infty} \left\| f(s) F(t) - \sum_{0}^{N} b_{\rho}^{(N)} F_{\rho}(s, t) \right\|_{E_{2}}^{2} \ge \int_{E_{1}} \mathcal{L}_{N \to \infty} \left\| f(s) F(t) - \sum_{0}^{N} b_{\rho}^{(N)} F_{\rho}(s, t) \right\|_{E_{2}}^{2} dE_{t}.$$

Thus a suitable sequence $\{\sum^{N_i} b_{\rho}^{(i)} F_{\rho}(s, t)\}$, with constant coefficients $\{b_{\rho}^{(i)}\}$, converges strongly to f(s) in $L_2(E_s)$ for almost all $t \in E_t$. Moreover if E_t is of finite measure, the Egoroff theorem guarantees uniform convergence for $t \in D_{\delta} \subset E_t$ where the measure of $E_t - D_{\delta}$ is inferior to arbitrary δ . A closed sequence $\{f_{\sigma}(s)\}$ is introduced as above.

⁹ S. Banach, *Théorie des Opérations Linéaires*, pp. 53, 58. Banach uses *fundamental* in the sense of our *closed*.

THEOREM 3. (a) If $\{\phi_{\gamma}(t)\}$ and $\{\psi_{\mu}(s)\}$ are closed in $T(E_t)$, $T(E_s)$ then $\{\phi_{\gamma}(t)\psi_{\mu}(s)\}$ is closed in $T(E_2)$. (b) If $\{\phi_{\gamma}(t)\psi_{\mu}(s)\}$ is closed in $T_{-}(E_2)$, then $\{\psi_{\mu}(s)\}$ is closed in $T_{-}(E_s)$. (c) If $\{F_{\rho}(s, t)\}$ is closed in $T(E_2)$, then $\{F_{\rho}(s, t)\}$ is closed in $T(E_s)$ for all but a non-significant set of t values in E_t .

The demonstrations of Theorems 1 and 2 apply without change in form.¹⁰ The space¹¹ $L_p(E, \mu)$, $p \ge 1$, is included in T(E). This is the space of measurable functions whose pth powers are summable over the measurable set E, where the Lebesgue-Radon-Stieltjes integral is equally admissible with the usual Lebesgue integral. Thus the symbol $\mu(E)$ denotes either the Lebesgue measure, or the Radon measure determined by a non-negative additive function of intervals. In all cases $\mu_2(E_2) = \mu_s(E_s)\mu_t(E_t)$, and the sets of zero measure constitute the non-significant sets. The norm is

(15)
$$||f(s, t)|| = \left[\int_{E} |f|^{p} d\mu(E)\right]^{1/p}$$
.

The verification of the main postulates is implied by the Fubini theorem, the Hölder-Minkowski inequalities and the denseness of the step functions. The functions $\{h_p(t)\}$, $\{g_\nu(s)\}$ or $\{h'_p(t)g'_\nu(s)\}$ as defined in Theorem 1 are again available.¹²

The space C(E) of continuous functions is another special case of T(E). We assume $E_{\epsilon} \subseteq R_m$, $E_t \subseteq R_n$ and $E_2 \subseteq R_{n+m}$ are bounded closed sets. The null set is the only non-significant set. The norm is

(16)
$$\left\| f(s,t) \right\| = \max_{s,t \in E_2} \left| f(s,t) \right|.$$

The sequences $h_{\rho}(t)$ and $g_{\nu}(s)$ are the ordered products of the elements 1, t_1, \dots, t_n and of 1, s_1, \dots, s_m respectively.

Postulates (b) and (c) may be replaced by the weaker

(b') $||f(w, z)||_{E_2} < \epsilon$ implies $||f(w, z)||_{E_w} < \eta(\epsilon)$, where $L_{\epsilon \to 0}\eta(\epsilon) = 0$ except possibly for non-significant z sets.

(c') $\|G(z)\|_{E_z} = 1$, $\|H(w)\|_{E_w} < \epsilon$ imply $\|G(z)H(w)\|_{E_2} < \eta(\epsilon)$.

¹¹ Saks, loc. cit. (1928), chap. 3, or J. Radon, Sitzungsberichte der Akademie der Wissenschaften, Vienna, class IIa, vol. 122 (1913). The Lebesgue case admits sets of infinite measure.

¹² For p>1 a valid theorem on *completeness* is obtained from Theorem 3 if closure (in $L_p(E, \mu)$) is replaced by completeness in $L_{p/(p-1)}(E, \mu)$ where E refers to E_s , E_t and E_2 in turn.

¹⁰ For (α), postulate (d) may be replaced by the assumption that each $f(s, t) \in T(E_2)$ is the strong limit of some (not necessarily fixed) sequence $\{h'_{\rho}(t)g'_{\nu}(s)\}$, where $h'_{\rho}(t) \in T(E_t)$ and $g'_{\nu}(s) \in T(E_s)$.

These modifications will be connoted by writing T'(E) and $T'_{-}(E)$. Consider, for instance, $C^{1}(E)$, the space of functions continuous together with their first partial derivatives on¹³ E. We restrict ourselves now to *closed* linear intervals I_s , I_t and the rectangle $I_2: I_s \times I_t$. The norms in $C^{1}(I_2)$ and $C^{1}(I_s)$ are,¹⁴ with $f_s \equiv \partial f/\partial s$,

(17)
$$\begin{aligned} \|f(s,t)\| &= \max_{I_2} |f(s,t)| + \max_{I_2} |f_s(s,t)| + \max_{I_2} |f_t(s,t)|, \\ \|f(s)\| &= \max_{I_s} |f(s)| + \max_{I_s} |f_s(s)|. \end{aligned}$$

It is well known that $C^{1}(I_{s})$ (and $C^{1}(I_{t})$) is complete. It is easy to show that $C^{1}(I_{2})$ also is complete. Indeed if $\{f^{(n)}(s, t)\}$ is a Cauchy sequence in $C^{1}(I_{2})$, then $f^{(n)}(s, t), f_{s}^{(n)}(s, t)$ and $f_{t}^{(n)}(s, t)$ converge uniformly in I_{2} and hence define an element of $C^{1}(I_{2})$.

Since

(b') $||F(s, t)||_{I_s} \ge \max_{t \in I_t} ||f(s, t)||_{I_s}$ (t and s are interchangeable), (c') $||G(s)H(t)||_{I_s} \le ||G(s)||_{I_s} ||H(t)||_{I_s}$.

it is clear that (b') and (c') are satisfied.

THEOREM 4. The conclusions in (α) , (β) , (γ) of Theorem 3 remain valid when T'(E) and $T'_{-}(E)$ replace T(E) and $T_{-}(E)$.

For (α) we now choose δ small enough in (7) and (7.1) to yield $\eta(\delta)$ inferior to the right side of (6). Then (6.1) is valid with $\eta(\delta)$ written in place of δ . On making use of (c') it is easily shown that the left side of (8) is smaller than $2\eta(\delta)$ and the final inequality in (9) is again obtained. For (β) we need only change (14) slightly. Indeed, by reference to (b') and (13)

$$\epsilon \geq \|f(s)F(t) - \sum \sum a_{\gamma\mu}\phi_{\gamma}(t)\psi_{\mu}(s)\|_{I_{2}}$$

would imply the contradiction

(14")
$$\eta(\epsilon) \ge |c|$$
 true max $|F(t)| > 0$.

The *true maximum* is defined just as in the analogous case of measurable functions and implies neglect of non-significant t sets. Evidently (γ) also may be maintained. Indeed the argument in footnote 8, for ex_1 ple, is easily amended to yield the desired result.

If the closure property of the sequence $\{\phi_{\rho}(z)\}$ in $T_{-}(E)$ or $C^{1}(I)$ is unaffected by the omission of $\phi_{\sigma}(z)$, then we shall say $\{\phi_{\rho}(z)\}$ is a

¹³ The sets used in C(E) are available for $C^{1}(E)$ also.

¹⁴ Even if f(s, t) and $g(s)h(t) \in C^1(E_2)$, $\| \|f(s, t)\|_{I_s} \|_{I_t}$ and $\| \|g(s)h(t)\|_{I_s} \|_{I_t}$ need not exist. Thus $C^1(E)$ is not included under T(E).

D. G. BOURGIN

"redundant" sequence and $\phi_{\sigma}(z)$ is a "superfluous" function. If $\{\phi_{\sigma_k}\}$, $k=1, 2, \cdots, K$, is superfluous, then for arbitrary ϵ we can satisfy

(18)
$$\left\| \phi_{\sigma_k} - \sum_{0}^{N} c_j \phi_j(z) \right\| < \epsilon, \quad j \neq \sigma_l, l = 1, \cdots, K.$$

LEMMA 1. In $T_{-}(E)$ or $T'_{-}(E)$ if $\{f_{\mu}(z)\}$ is closed and non-redundant, then for any F(z), $\overline{L}_{\epsilon \to 0} |d_{1}(\epsilon)| \leq D < \infty$ where $d_{1}(\epsilon)$ is consistent with $||F(z) - d_{1}(\epsilon)f_{1}(z) - \sum_{2}^{N} d_{j}f_{j}(z)|| < \epsilon$.

In the contrary case

(19)

$$\epsilon + \left\|F(z)\right\| \geq \left\|F(z)\right\| + \left\|F(z) - d_1(\epsilon)f_1(z) - \sum_{2}^{N} d_i f_i(z)\right\|$$

$$\geq \left\|d_1(\epsilon)\right\| \left\|f_1(z) - \sum_{2}^{N} \frac{d_i}{d_1} f_i(z)\right\|.$$

Now

(20)
$$\left\|f_1(z) - \sum_{2}^{N} \frac{d_i}{d_1} f_i(z)\right\| \ge c > 0,$$

for all N and d_i , since $f_1(z)$ is not superfluous. For all sufficiently small ϵ , (19) and (20) imply

(21)
$$|d_1(\epsilon)| \leq 2||F(z)||/c$$

in contradiction with the hypothesized non-boundedness of $d_1(\epsilon)$.

THEOREM 5. If $\{\phi_{\mu}(t)\psi_{\mu}(s)\}$ is closed in $T_{-}(E_{2})$ or $C^{1}E$, then (I) $\{\psi_{\mu}(s)\}$ is closed in $T_{-}(E_{s})$ (or $C^{1}(I_{s})$); (II) every finite subsequence of $\{\psi_{\mu}(s)\}$ is superfluous.¹⁵

Evidently (I) is a special case of Theorem $3(\beta)$. In view of (I) if $\phi_{\sigma}(T)\psi_{\sigma}(s), \sigma = 1, \cdots, q$, is superfluous, then $\psi_{\sigma}(s), \sigma = 1, \cdots, q$, is superfluous. Accordingly we may restrict ourselves to non-redundant sequences $\{\phi_{\mu}(t)\psi_{\mu}(s)\}$.

We demonstrate (II) by induction. Suppose $\psi_1(s), \dots, \psi_{n-1}(s)$ are superfluous. Since no finite basis exists in $T_{-}(E)$ or $C^1(I)$, we may find a function F(t) such that the set $F(t), \phi_{\sigma}(t), \sigma = 1, \dots, n$, is linearly independent. Suppose $\psi_n(s)$ is not superfluous. Then

(22)
$$\left\|\psi_n(s) - \sum_{n+1}^N k_i \psi_i(s)\right\|_E \ge c > 0,$$

¹⁵ Evidently $\{\psi_{\mu}(s)\}$ need not be *dense closed* in the sense that any infinite subsequence is closed.

for all k_i and N. By hypothesis sequences $\{a_i^{(\rho)}\}\$ and a constant N exist for arbitrary ϵ such that

(22.1)
$$\left\|\psi_{\rho}(s)-\sum_{i=n}^{N}a_{i}^{(\rho)}\psi_{i}(s)\right\|_{E_{s}}\leq\epsilon, \quad \rho=1,\cdots,n-1.$$

Moreover

(23)
$$\left\| \psi_{n}(s)F(t) - \sum_{\rho=1}^{n} d_{\rho}\phi_{\rho}(t)\psi_{\rho}(s) - \sum_{n+1}^{N} d_{i}\phi_{i}(t)\psi_{i}(s) \right\| \\ + \left\| \sum_{\rho=1}^{n-1} d_{\rho}\phi_{\rho}(t) \left(\psi_{\rho}(s) - \sum_{n}^{N} a_{i}^{(\rho)}\psi_{i}(s) \right) \right\| \\ \ge \left\| \psi_{n}(s) \left[F(t) - \sum_{\rho=1}^{n-1} d_{\rho}a_{n}^{\rho}\phi_{\rho}(t) - d_{n}\phi_{n}(t) \right] \\ - \sum_{n+1}^{N} d_{i}\phi_{i}(t)\psi_{i}(s) - \sum_{\sigma=1}^{n-1} \sum_{n+1}^{N} a_{i}^{(\sigma)}d_{\sigma}\phi_{\sigma}(t)\psi_{i}(s) \right\|.$$

The right side of this inequality, by an argument similar in all details to that involved in the passage from (12) to (14), dominates

(23.1)
$$c \left\| F(t) - \sum_{1}^{n-1} d_{\sigma} a_{n}^{(\sigma)} \phi_{\sigma}(t) - d_{n} \phi_{n}(t) \right\|_{I_{t}}$$
 in $T_{-}(E_{2})$

or (cf. (b'')) (23.2) $\max_{\substack{t \in I_t}} c \left| F(t) - \sum_{1}^{n-1} d_{\sigma} a_n^{\sigma} \phi_{\sigma}(t) - d_n \phi_n(t) \right| \text{ in } C^1(I_2).$

In (23.2) we note $\phi_i(t) \in C^1(I_i)$ implies $\phi_i(t) \in C(I_i)$. Hence again by the Riesz theorem the expressions in (23.1) and (23.2) have a positive lower bound, denoted by K > 0. In view of (22.1) closure of $\{\phi_{\mu}(t)\psi_{\mu}(s)\}$ and postulates (b) or (c''), constants N, d_i and $a_i^{(\rho)}$ exist such that the left side of (23) is inferior to

(24)
$$\epsilon + \sum_{1}^{n-1} |d_{\rho}| ||\phi_{\rho}(t)||_{I_{t}}\epsilon.$$

Hence by Lemma 1 applied to each d_{ρ} the upper bound in (24) approaches 0 with ϵ in contradiction with the conclusion K>0. Thus $\psi_n(s)$ is superfluous.

This type of argument may be used to show that the non-redundancy of $\{\phi_{\mu}(t)\psi_{\mu}(s)\}$ implies that $\psi_1(s)$ is superfluous. The induction is thus complete and part (II) of our theorem is established. It is an easy matter to extend the theorem to $T'_{-}(E)$ spaces.

UNIVERSITY OF ILLINOIS