
CLOSURE OF PRODUCTS OF FUNCTIONS1 

D. G. BOURGIN 

This note presents some natural theorems on the characterizations 
of certain closed {or complete) sets of functions with separable varia
bles. In order to motivate the developments of the paper we treat a 
simple case first in elaborate detail. The proof is so formulated that 
it holds with trifling modifications for the more general situations in 
Theorems 3 and 4. The result in Theorem 5 belongs to a slightly dif
ferent range of ideas. 

Let s~(s\, - • • , sm) and t~(h, • • • , tn) here stand for points in the 
euclidean spaces Rm and Rn. The term "interval" designates the gen
eralized rectangular parallelopipedon open on the left.2 We shall make 
use of the intervals I8cRmy ItcRn and I2 = Is X It c Rn+m> We are 
first interested in L%{I)y the space of complex valued functions of sum-
mable square over I. The norm and scalar product are defined as 
usual by 

(1) \\f(s9 t) - g{s, OH = [ ƒ ƒ I ƒ(', 0 - g(s9 t) I W.dJi] ' \ 

(2) (ƒ(*, /), g(s, /)) = f f f(s, t)g(s, f)dl8dlt, 

where g(s, t) is the conjugate of g(s, t). The subscript Ia or 1% will indi
cate that the left-hand functionals are on the corresponding intervals. 

We shall understand closure of the sequence of functions3 

{<l>y(t)\l/^(s)}1 y; ju = 0, 1, • • • , to mean that for every f(s, t) e Li(I*) 
and arbitrary e > 0 there exists a finite sequence of complex constants 
{|37M} and integers A and B such that 

(3) i/c*,*)- ê ix^wws) < €. 

I t is well known that with the adjunction of the scalar product de
fined in (2), Li(Ii) is a complex Hubert space and that closure and 
completeness are equivalent concepts. 

THEOREM 1. If {<t>y(t)ipv(s)}, 7, M = 0 , 1, • • • , is a sequence of com-

1 Presented to the Society, December 2, 1939. 
2 S. Saks, Theory of the Integral, English edition, p. 57. 
3 Curly brackets, { }, will always denote sequences. 
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plex valued f unctions in Z^C^O, then a necessary and sufficient* condition 
for closure is that {(j>y(t)} and {i/v(s)} be closed in the spaces L^It) 
and Z/2(I«) respectively. 

We deal with the sufficiency demonstration first. Suppose the de-
numerable set of all subintervals, with rational end points, of It to 
be ordered according to 0, 1, 2, • • • . We designate by hp{t) the char
acteristic function5 of the pth subinterval divided by its norm. The 
function gv(s) is similarly defined for the range Is. Thus 

(4) IkWlk = M * . = i-
It is well known that {hp(t)gv(s)} f p, J> = 0, 1, • • • , has the closure 
property in £2(^2). Hence for f(s, i) £ L2(h) and arbitrary e > 0 we 
can find integers M and N and MN complex constants {apv} such 
tha t 

(5) 

Let 

(6) 

Thus 

(6.1) 

M N 

ƒ0, t) - X) Z) aPvhP{t)gv{s) 
0 0 

< e/2. 

ö < min 
( 4MN 

2*ZZI 

max | apv |, 1 

<t/2. 

> 

In view of the assumed closure properties of {#7(J)} and {^M(s)}, 
integers A and B and complex constants { d ^ } , {e(C}},p = 0 ,1 , • • -,M 
and J> = 0, 1, • • • , N, exist which yield the simultaneous inequalities 

(7) 

(7.1) 

Hence 

\g»(s) 

\hP(t) 

- Z) <C Mm 
M =0 II 

A ] 
— Z e7 0T(O 

0 1 

<8/2, 

<Ô/2. 

4 A special case amounting to the assertion of sufficiency, only, for the subspace 
of 1,2(12) composed of real continuous functions, when {<f>y(t)} and {tn(s)\ are re
stricted to be orthogonal sets of functions, has been given by Courant: Courant-
Hilbert, Methoden der mathematischen Physik, vol. 1, 1st edition, p. 90. Another spe
cial sufficiency proof is given in A. Zymund, Trigonometrical Series, p. 13. 

6 Saks, loc. cit., p. 6. 
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Z dJ Ms) ^ \U>(s)\\it + 
I. 

("), 
g»(s) ~ Z^M M*) ^ 2. 

ra 

Let j87M=X^oX)^=oöP>'4P)^)- The triangle inequality for norms yields, 
in view of (6), (7), (7.11), and (7.2) 

A B ( ) ( v ) Il 
h(l)g»(s) - E E ^ <C 0*(OM*) 

(8) 

\ 0 / I l 

0 \ G / + 

£| |*,(Ö| | i S'OO - X) <C iM*) 
i-r. 

+ 2] dj yp^s) 
Is 

K(t) - £ e7<}>y(t) 

(9) 

^ 2 5 , forp = 0, 1, • • • , Af, v = 0, 1, • 

On combining the various inequalities above 

f(s,t) - ZZ/?7M<K(0W*) 
0 0 

M N 

ƒ(*. 0 ~ Z Z a>Pvhp(t)gv(s) 

+ 

A7. 

M N / A B \ II 

Z Z <v( h(t)gv{s) - Z Z eydl<t>y(WÀs) ) 
0 0 \ 0 0 / I l 

M N / || A B || \ 

^ e/2 + Z Z ( \o„ | *p(0«,(5) - Z Z eyd,<t>y(t)Us) ) 
o o \ II o o II / 

M N 

S e/2 + 2ôZ Z I <*pr | ^ €. 
o o 

This asserts the closure property for {^(O^/vC*)}. 
The necessity demonstration is equally direct. A trivial applica

tion of Fubini's theorem indicates that </>y(t) e L,2(It), &v(s) £ Li{Is) 
when 07(O^/ifa) £-^2(^2). No generality is lost if we assume that 
{^/*W} is a linearly independent set of functions. Suppose {^M(s)} 
does not have the closure property. Then ƒ(s) e L2(I8) exists for which 
for all R and &w 
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= C > 0, 6M = bi + i&M". 
1/. 

A fundamental result of Riesz guarantees the existence of minimal 
constants,6 { h%}, such that for b^^bf, /x^ JR, 

( ID ƒ(') - Z i'Ms) 
i . 

f(s) - E Mv(*) 

The corresponding minimal constants for Af (s) are evidently {-45*}. 
Hence7 

(12) FW(s) - £ S>(W,to 
I/. 

*«ƒ(*) - Z WOWO , te It, 
i . 

when F(/) e L2(It) is a fixed function of positive norm. We write 

Q 

(13) b,(t) = E M T W , 
o 

In view of (12) we have 

0 < c\\F(t)\\It g \\f(s)F(t) - £#? (* )*„ (* ) 

Q< 

1/2 

(14) 
1/2 

= F f I f(,s)F(t) - £ 5>(W,M If dJ.l 
LJ^ I I o Ik J 

L«JJ»II o o II J. J 

= II f(s)F(t) - I S ay,<t,y(t)Us) 
II 0 0 

Since (14) is in contradiction with the assumed closure property of 
{(fryityyp^s)} our necessity proof is complete. 

We denote by hp' (t) and gi (s) the step functions in Rn and Rm anal
ogous to hp(t) and gv(s). According to a classical result, {hp' (t)g! (s)}, 
p, J> = 0, 1, • • • , have the closure property in .L2CE2) when the 5, / 
integration is over Rn+m or any Lebesgue measurable subset £2. Ac
cordingly Theorem 1 and its demonstration remain formally valid in 
detail when I81 It and I2 are replaced either by Rn, Rm and Rn+m or by 

6 F. Riesz, Acta Mathematica, vol. 41 (1916), p. 77, Lemma 3. 
7 With the choice F(t)f(s), the method of proof of the necessity condition remains 

valid when sets of infinite measure are included. 
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the sets E8, Et and E2 = E8XEt of finite or infinite Lebesgue measure. 

THEOREM 2. If {Fp(s, t)}, p = 0, 1, • • • , is closed in L2(E2), then the 
sequence is also closed in L2(E8) except possibly for a t set of zero meas
ure* 

Suppose a lower bound of approximation tof(s) 8 L2(E8), by linear 
combinations of {Fp(s, t)}, is c(t) E I 2 ( £ « ) , where <*>c(t)>Q for 
tzGcEu Let F[t) 8 L2(Et) differ from 0 on G (say F(t)=c(t)). The 
analogue of (14) is 

(14') \\c(t)F(t)\\o g \\c(t)F(t)\\Bt =S 
R 

f(s)F(t) ~ Z VM(*. *) 

Hence G has zero measure. Let {f(<r)(s)} be closed in L2(E8) and de
note the corresponding G sets, defined above, by {G*}. The denumer-
able sum ©G* is plainly of measure zero. Thus {Fp(s, t)} is closed in 
Li(E9) for silt E Et-®G*. 

We now abstract the properties needed in the foregoing proofs. Let 
T(E) denote a Banach space9 of real functions on E. A set G, G c £ , 
will be called a non-significant set if f(z) e T(E) may be arbitrarily 
changed on G without affecting the value of ||/(s)||fl. The postulates 
below hold for T(E). When (d) and (e) are omitted we write T-(E). 

(a) If f(s, t) 8 T(E2) then f(s, t) 8 T(E8) and ƒ(5, t) 8 r(E«) for all 
save a non-significant set of t or 5 values respectively. If f{s) 8 T(E8), 
F{t) 8 r (E , ) then/(5)F(0 8 T(E2). 

(b) ||/(M)lkHI ll/(*.olklk- , fl 
(c) If, neglecting non-significant sets, \fi{t) \ > \ft(t) \, then ||/i(*)|U( 

>||/i«lk 
(d) There exists a sequence {hp(i)gv(s)}, p, Ï> = 0, 1, • • • , with the 

closure property in T(E2), where hp(t) 8 T(Et) and gv(s) 8 T(E8). 
(e) Denumerable sums of non-significant sets are non-significant 

sets. 
8 A sharper result follows from Fatou's lemma. Suppose F{t) £ Lz(Et) differs from 

0 for almost all teEt. Now 

0 

Thus a suitable sequence {E1*^ Fp(s, 0 } , with constant coefficients {tip ), converges 
strongly to f(s) in L2(ES) for almost all teEt. Moreover if Et is of finite measure, the 
Egoroff theorem guarantees uniform convergence for t £ Dt C Et where the measure of 
Et—D$ is inferior to arbitrary 5. A closed sequence {ƒ*(*)} is introduced as above. 

9 S. Banach, Théorie des Opérations Linéaires, pp. 53, 58. Banach uses fundamental 
in the sense of our closed. 
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THEOREM 3. (a) If {<t>y(t)} and {fa(s)} are closed in T(Et), T(E3) 
then {<t>y(t)\l/^(s)} is closed in r (E 2 ) . (j3) If {<t>y(t)\l/n(s)} is closed in 
r_(E 2) , then {t/vCO} is closed in T-(E8). (7) If {Fp(s, i)} is closed in 
r ( £ 2 ) , then {Fp(s> t)} is closed in T(E8) for all but a nonsignificant 
set of t values in Eu 

The demonstrations of Theorems 1 and 2 apply without change in 
form.10 The space11 LP(E, ju), p^l, is included in T(E). This is the 
space of measurable functions whose pth powers are summable over 
the measurable set E, where the Lebesgue-Radon-Stieltjes integral 
is equally admissible with the usual Lebesgue integral. Thus the 
symbol fx(E) denotes either the Lebesgue measure, or the Radon 
measure determined by a non-negative additive function of intervals. 
In all cases ^2(^2) = fi9(Ea)nt(Et), and the sets of zero measure con
stitute the non-significant sets. The norm is 

(15) | | / ( 5 , / ) | | = [ J ^ | / | ^ M ( £ ) ] 1 / P . 

The verification of the main postulates is implied by the Fubini theo
rem, the H older-Minkowski inequalities and the denseness of the step 
functions. The functions {hp(t)}y {gv(s)\ or {hp' {t)gl (s)} as defined 
in Theorem 1 are again available.12 

The space C(E) of continuous functions is another special case of 
T(E). We assume E& £Rm, Et %Rn and E2 £i?w+m are bounded closed 
sets. The null set is the only non-significant set. The norm is 

(16) ||/(*, 0|| = max I ƒ(*, *) I. 
s,ttE2 

The sequences hp(t) and gv(s) are the ordered products of the elements 
1, h, • • • y tn and of 1, Si, • • • , sm respectively. 

Postulates (b) and (c) may be replaced by the weaker 
(b') ||/(w, z)I\E2<€ implies \\f(w, z)\\EW< 17(e), where L€ .0^(e)=0 ex

cept possibly for non-significant z sets. 
(c') | | G ( s ) | k = l , \\H(w)\\Ew<e imply ||G(s)iT(«0|U,<„(e). 

10 For («), postulate (d) may be replaced by the assumption that each ƒ (s, t) £ T(E2) 
is the strong limit of some (not necessarily fixed) sequence {hf

p(t)gi(s)}, where 
hf

p(t) £ T(Et) and gi(s) e T(ES). 
11 Saks, loc. cit. (1928), chap. 3, or J. Radon, Sitzungsberichte der Akademie der 

Wissenschaften, Vienna, class l i a , vol. 122 (1913). The Lebesgue case admits sets of 
infinite measure. 

12 For p > 1 a valid theorem on completeness is obtained from Theorem 3 if closure 
(in LP{E, ix)) is replaced by completeness in Lp/(P-i)(Et /*) where E refers to Es, Et 
and £2 in turn. 
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These modifications will be connoted by writing Tf(E) and TL(E). 
Consider, for instance, Cl(E), the space of functions continuous to
gether with their first partial derivatives on13 E. We restrict ourselves 
now to closed linear intervals I81 It and the rectangle I2: IsXlt. The 
norms in C 1 ^ ) and C1^*) are,14 with fs==df/ds, 

||/(5, OH = max I ƒ(*, t) I + max I f9(s, t) | + max | ft(s, t) |, 

(17) Ti Ti 

||/(5)|| = m a x | / ( 5 ) | + m a x | ƒ.(*) |. 
•*« •*« 

I t is well known that C1^,) (and C^/*)) is complete. I t is easy to 
show that Cl(h) also is complete. Indeed if {/(w)(s, /)} is a Cauchy 
sequence in C 1 ^ ) , then fM(s, t),f^n)(s, t) and ftn\sy t) converge uni
formly in I2 and hence define an element of C 1 ^ ) . 

Since 
9 (t and 5 are interchangeable), (b') \\F(s,t)\\i%*m3xt*it\\f(s,t) 

^ (c') ||G(s)£r(0||r,^||G(s)||rJ|-ff(0 
it is clear that (b') and (c') are satisfied. 

THEOREM 4. The conclusions in (a), (]8), (7) of Theorem 3 remain 
valid when T'(E) and TL(E) replace T(E) and T-(E). 

For (a) we now choose 5 small enough in (7) and (7.1) to yield rj(S) 
inferior to the right side of (6). Then (6.1) is valid with rj(S) written 
in place of 8. On making use of (c') it is easily shown that the left 
side of (8) is smaller than 277(0) and the final inequality in (9) is again 
obtained. For (j8) we need only change (14) slightly. Indeed, by refer
ence to (b') and (13) 

e è \\f(s)F(t) - E E *W07(0*M(*)||/, 

would imply the contradiction 

(14") if(e) ^ \c I true max | F(t) \ > 0. 

The true maximum is defined just as in the analogous case of measur
able functions and implies neglect of non-significant t sets. Evidently 
(7) also may be maintained. Indeed the argument in footnote 8, for 
ex 1 pie, is easily amended to yield the desired result. 

If the closure property of the sequence {cj>p(z)} in T~(E) or Q-(I) 
is unaffected by the omission of <t>ff(z)9 then we shall say {<t>P(z)} is a 

13 The sets used in C(E) are available for C-(E) also. 
^ " Even ifƒ(*, t) and g(s)h(t) E V(E2), || \\f(s, t) || J , , and || | |««ft(0| | /Jk need not 

exist. Thus O(E) is not included under T(E). 
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"redundant" sequence and <t>„{z) is a "superfluous" function. If {$**}, 
k = l, 2, • • • , K, is superfluous, then for arbitrary e we can satisfy 

(18) 0**~~ iC'^/W < €, j 9* <ri9l =* 1, • - • , K. 

LEMMA 1. In T_(E) or 71(E) *ƒ {ƒ„(*)} is closed and non-redundant, 
then f or any F(z), Le-o\di(e)\ SD<co where di(e) is consistent with 
\\F(z)-d1(e)f1(z)-^d1-M^\\<^ 

In the contrary case 

e + ||F(s)|| ê ||F(s)|| + 
(19) 

^ 1 di(e) | 

| F ( * ) - d i ( « ) / i ( * ) - E ^ y ( « ) | 

* a.t \ 

2 1 

1 • £ w i i| 

Now 

(20) ! |/i(») - i 
2 

d{ 1 
T / * ( « ) ^ c > 0, 

for all N and d,-, since/i(2) is not superfluous. For all sufficiently small 
e, (19) and (20) imply 

(21) 1^(6)1 S2\\F{z)\\/c 

in contradiction with the hypothesized non-boundedness of di(e). 

THEOREM 5. If {0 M (O^MW} ^ ^ ^ in T_(£2) or CXJE, //*en (I) 
\^fx(s)} is closed in 7_(ES) (or Cl(Is))\ (II) every finite subsequence of 
{^(5)} is superfluous.15 

Evidently (I) is a special case of Theorem 3(j8). In view of (I) if 
<j>a(T)\l/ff(s), (r = l, • • • , g, is superfluous, then \l/„(s), c r= l , • • • , q, is 
superfluous. Accordingly we may restrict ourselves to non-redundant 
sequences {</>M(0^M(5) }• 

We demonstrate (II) by induction. Suppose ^1(5), • • • , \l/n-i(s) are 
superfluous. Since no finite basis exists in 71(E) or Cl(I), we may find 
a function F(t) such that the set F(t), <£*(/), <r = l, • • • , w, is linearly 
independent. Suppose \f/n(s) is not superfluous. Then 

(22) 
w+1 

^ > 0 , 

15 Evidently {^(s)} need not be dense closed in the sense that any infinite sub
sequence is closed. 
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for all ki and N. By hypothesis sequences {a\p)) and a constant N 
exist for arbitrary e such that 

( P ) 

$p(S) - E f l i h(s) ^ €, p = 1, (22.1) 

Moreover 
n JV I 

*»(*)F(*) - E <*P*P(0TM*) - X di<t>i{t)yPi{s) 

n — 1. 

(23) 

p = l W + l II 

\ n / I 0 = 1 

M*)[ *"(*) - S d/nïti) - dn<t>n(t) 
p - 1 

- E dMÛUs) - E ^ aVdMt)Us) • 
n + 1 <r=l n + 1 II 

The right side of this inequality, by an argument similar in all details 
to that involved in the passage from (12) to (14), dominates 

(23.1) c\ \F(0 

or (cf. (b'O) ' 

(23.2) n aax c 

(<r) . 

F(t) - 2Xo»'*,(0 -<W»(0 in T_(E2) 

^(0 - Z <kMk(/) - *.*.(') in C\h). 

In (23.2) we note <t>j(t) e C^/*) implies 0/(0 e C(I*)- Hence again by 
the Riesz theorem the expressions in (23.1) and (23.2) have a posi
tive lower bound, denoted by K>0. In view of (22.1) closure of 
{(l>n(t)^n(s)} and postulates (b) or (c") , constants N, di and a[p) exist 
such that the left side of (23) is inferior to 

(24) « + £kllk(fliir««. 
i 

Hence by Lemma 1 applied to each dp the upper bound in (24) ap
proaches 0 with e in contradiction with the conclusion K>0. Thus 
\l/n(s) is superfluous. 

This type of argument may be used to show that the non-redun
dancy of {<l>fi(t)^n(s)} implies that ^1(5) is superfluous. The induction 
is thus complete and part (II) of our theorem is established. It is an 
easy matter to extend the theorem to TL(E) spaces. 
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