A NOTE ON MAXIMUM MODULUS AND THE ZEROS OF AN INTEGRAL FUNCTION

S. M. SHAH

Let $f(z)$ be an integral function of finite order $\rho \geqq 0$, let $M(r, f)$ $=M(r)=\max _{|z|=r}|f(z)|$, and let $n(r, f)=n(r)$ be the number of zeros of $f(z)$ in $|z| \leqq r$ and on its circumference. I have discussed elsewhere ${ }^{1}$ the behaviour of $g(r)=\log M(r) / n(r)$, as $r \rightarrow \infty$, and have proved that for every canonical product function $f(z)$

$$
\begin{equation*}
\liminf _{r=\infty} \frac{\log M(r)}{n(r) \phi(r)}=0 \tag{1}
\end{equation*}
$$

where $\phi(r)$ is any positive L function ${ }^{2}$ such that

$$
\begin{equation*}
\int^{\infty} \frac{d x}{x \phi(x)}<A=\text { const. } \tag{2}
\end{equation*}
$$

The question arises how large and how small $g(r)$ and $G(r)$ $=T(r, f) / n(r)$ can be, where $T(r, f)=T(r)$ is the Nevanlinna characteristic function for $f(z)$. I prove in this note the following result.

Theorem. Given $\rho \geqq 0$ and $\psi(x)$ any positive function such that

$$
\limsup _{x=\infty} \frac{\log \psi(x)}{\log x} \leqq \rho
$$

There exists an integral function $F(z)$ of order ρ for which

$$
\begin{equation*}
\limsup _{r=\infty} \frac{T(r, F)}{\psi(r) n(r, F)}=\infty \tag{3}
\end{equation*}
$$

and an integral function $f(z)$ of order ρ for which

$$
\begin{equation*}
\liminf _{r=\infty} \frac{\psi(r) T(r, f)}{n(r, f)}=0 \tag{4}
\end{equation*}
$$

Proof. We shall first construct an integral function $f(z)$ of order ρ for which

[^0]\[

$$
\begin{equation*}
\lim _{r=\infty} \frac{\log M(r, f) \psi(r)}{n(r, f)}=0 \tag{4.1}
\end{equation*}
$$

\]

from which (4) will follow. Let

$$
\lambda_{n}=n^{n^{n}}, \quad \psi(x)=e^{\left(\rho+\eta_{x}^{\prime}\right) \log x}
$$

where we may suppose without loss of generality that $\eta_{x}^{\prime}>0$. We know that $\eta_{x}{ }^{\prime} \rightarrow 0$ as $x \rightarrow \infty$. Let η_{r} be the upper bound of η_{t}^{\prime} for $t \geqq r$. Then $\eta_{r} \rightarrow 0$ monotonically as $r \rightarrow \infty$, and $\psi(r) \leqq e^{\left(\rho+\eta_{r}\right) \log r}$. Let $\epsilon_{1}=\epsilon_{2}=1$, and

$$
\begin{aligned}
& \epsilon_{n}=2 \eta_{n}+\frac{(4+\rho) \log \lambda_{n-1}}{\log \lambda_{n}}, \quad n=3,4,5, \cdots ; \\
& k=[\rho]+1 ; \\
& \mu_{n}=\left[\lambda_{n}^{\rho+\epsilon_{n}}\right], \quad \zeta_{n}=\left[\lambda_{n}^{\rho / k+\epsilon_{n}}\right], \quad n=1,2,3, \cdots ; \\
& f(z)=\prod_{1}^{\infty}\left\{1+\left(\frac{z}{\lambda_{n}}\right)^{k \mu_{n}}\right\} ; \quad F(z)=\prod_{1}^{\infty}\left\{1+\frac{z^{k}}{\lambda_{n}}\right\}^{\xi_{n}} .
\end{aligned}
$$

It is easily seen that $f(z)$ and $F(z)$ are canonical products. Further, $n\left(\lambda_{n}, f\right)=k\left(\mu_{1}+\cdots+\mu_{n}\right) \sim k \mu_{n}$ and hence

$$
\limsup _{r=\infty} \frac{\log n(r, f)}{\log r}=\lim _{n=\infty} \frac{\log k+\log \mu_{n}}{\log \lambda_{n}}=\rho .
$$

Hence $f(z)$ is an integral function of order ρ. Let now $x=\lambda_{m}$. Then

$$
\begin{aligned}
\log f(x)= & \sum_{n=1}^{m-1} \log \left\{1+\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{k \mu_{n}}\right\} \\
& +\log 2+\sum_{m+1}^{\infty} \log \left\{1+\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{k \mu_{n}}\right\} \\
= & \Sigma_{1}+\log 2+\Sigma_{3}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \Sigma_{3} \leqq \sum_{m+1}^{\infty}\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{k \mu_{n}} \leqq \sum_{m+1}^{\infty}\left(\frac{1}{2}\right)^{k \mu_{n}}=O(1) \\
& \Sigma_{1}<m \log \left\{2\left(\lambda_{m}\right)^{k \mu_{m-1}}\right\}
\end{aligned}
$$

Hence for $m \geqq m_{0}$,

$$
\begin{aligned}
\log f(x) & <2 m\left\{\log 2+k \mu_{m-1} \log \lambda_{m}\right\} \\
& \leqq \exp \left\{\log \mu_{m-1}+2 \log \log \lambda_{m}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\psi(x) \log f(x)}{n(x, f)} \leqq & \exp \left\{\left(\rho+\eta_{\lambda_{m}}\right) \log \lambda_{m}+\log \mu_{m-1}+2 \log \log \lambda_{m}-\log \mu_{m}\right\} \\
\leqq & \exp \left\{\left(\rho+\eta_{m}\right) \log \lambda_{m}+\log \mu_{m-1}+2 \log \log \lambda_{m}\right. \\
& \left.-\left(\rho+2 \eta_{m}+(4+\rho) \log \lambda_{m-1} / \log \lambda_{m}\right) \log \lambda_{m}+O(1)\right\}
\end{aligned}
$$

and the last expression tends to zero with $1 / m$. Hence

$$
\liminf _{r=\infty} \frac{\psi(r) \log M(r, f)}{n(r, f)}=0
$$

which proves (4.1). Further

$$
n\left(\lambda_{n}^{1 / k}, F\right)=k\left(\zeta_{1}+\cdots+\zeta_{n}\right) \sim k \zeta_{n}
$$

Hence $F(z)$ is an integral function of order ρ. Let now $r=\frac{1}{2} \lambda_{n}^{1 / k}$. Then

$$
\begin{aligned}
& n(r, F)=k\left(\zeta_{1}+\cdots+\zeta_{n-1}\right) \leqq k \zeta_{n-1}\left(1+\frac{2 \zeta_{n-2}}{\zeta_{n-1}}\right) \\
&<\exp \left\{\log k+\log \zeta_{n-1}+\frac{2 \zeta_{n-2}}{\zeta_{n-1}}\right\} \\
& \log M\left(\frac{2}{3} r, F\right)>\zeta_{n} \log \left(1+\frac{1}{3^{k}}\right) \\
&=A \exp \left\{\left(\frac{\rho}{k}+\epsilon_{n}\right) \log \lambda_{n}+O\left(\lambda_{n}^{-\rho / k}\right)\right\}
\end{aligned}
$$

for $n \geqq n_{0}$. Hence ${ }^{3}$

$$
\begin{aligned}
\frac{\log M\left(\frac{2}{3} r, F\right)}{n(r, F) \psi(r)}> & A \exp \left\{\left(\frac{\rho}{k}+\epsilon_{n}\right) \log \lambda_{n}-\log \zeta_{n-1}\right. \\
& \left.-\left(\rho+\eta_{n}\right)\left(\frac{1}{k} \log \lambda_{n}-\log 2\right)+O(1)\right\} \\
= & A \exp \left\{\epsilon_{n} \log \lambda_{n}-\log \zeta_{n-1}-\frac{\eta_{n}}{k} \log \lambda_{n}+O(1)\right\} \\
= & A \exp \left\{2 \eta_{n} \log \lambda_{n}+(4+\rho) \log \lambda_{n-1}\right. \\
& \left.-\left(\frac{\rho}{k}+\epsilon_{n-1}\right) \log \lambda_{n-1}-\frac{\eta_{n}}{k} \log \lambda_{n}+O(1)\right\}
\end{aligned}
$$

[^1]and the last expression tends to infinity with n. Hence
$$
\limsup _{r=\infty} \frac{\log M\left(\frac{2}{3} r, F\right)}{n(r, F) \psi(r)}=\infty,
$$
and so
$$
\limsup _{r=\infty} \frac{T(r, F)}{\psi(r) n(r, F)}=\infty
$$

Finally, I must thank Dr. T. Vijayaraghavan for helpful criticisms.
Muslim University,
Aligarh, India.

[^0]: ${ }^{1}$ (i) A theorem on integral functions of integral order, Journal of the London Mathematical Society, vol. 15 (1940), pp. 23-31. (ii) On integral functions of integral or zero order, to be published. (iii) On integral functions of perfectly regular growth, Journal of the London Mathematical Society, vol. 14 (1939), pp. 293-302.
 ${ }^{2}$ For definition see G. H. Hardy, Orders of Infinity, 1924, p. 17.

[^1]: ${ }^{3} A$ denotes a positive constant.

