
NOTE ON SOME ELEMENTARY PROPERTIES OF 
POLYNOMIALS 

P. ERDÖS 

In a previous paper T. Griinwald1 and I proved that if/(#)is a poly
nomial of degree n ^ 2 and satisfies the following conditions : 

all roots of f(x) are real, ƒ(— 1) = ƒ (+ 1) = 0, 

f(x) 7* 0 for — 1 < x < 1, max f(x) = 1, 
- K K l 

then 

r+i 4 

(2) J ̂  f(x) ̂  -. 

Equality occurs only for f(x) = 1 — x2. 
This result can be generalized as follows: Suppose ƒ(x) satisfies (1) 

and let f (a) =ƒ(&) = d ^ 1, - l<a <b < 1 ; then 

(3) ft - a ^ 2(1 - d)1'2. 

Again equality occurs only for f(x) = 1 —#2. It is clear that (2) follows 
from (3) by integration with respect to d. 

PROOF. Instead of (3) we prove the following slightly more general 
result: Let f(x) satisfy (1), and determine the greatest positive con
stant Cf such that 

f(a)f(a + Cf) = d\ - 1 < a < a + cf < 1; 

then 

(4) cf ^ 2(1 - d)l>\ 

Equality holds only for f(x) = 1— x2, a= — (1 —d)112. 
Suppose there exists a polynomial of degree n>2 satisfying (1) 

with Cf ̂ 2 ( 1 — d)ll2\ then we will prove that there exists a polynomial 
of degree n — 1 with Cf >2(1 —d)1/2; and this proves (4) since it is easy 
to prove that (4) is satisfied for polynomials of second degree, that 
is, for l - -# 2 . 

Denote the roots off(x) by Xi = — 1, #2 = 1, #3, • • • , xn and suppose 
first that for i > 2 the xi are not all of the same sign. Let xn be the larg
est positive root and xn_i the smallest negative root, and denote by y 
the root off (x) in ( — 1 , + 1 ) . Consider the polynomial of degree n 

1 Annals of Mathematics, (2), vol. 40 (1939), pp. 537-548. 
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<£(#) = c 
f(x)(x - y)2 

{X ~~* Xn) \X —~ OCfi—\) 

where we choose c so that <j>{x) ^ 0 for —1 ^x^ 1. Then it is easy to 
see that for large x, cj>(x) and f(x) have opposite signs. Thus their 
leading coefficients have opposite signs. Hence it is possible to choose 
c such that the polynomial F(x) =f(x)+cj>(x) is of degree » — 1 . Since 
n — 2 of its roots are real it can have only real roots, and since 
F'(y) = 0 , F(y) = 1, it follows that m a x _ ^ ^ i F(x) = 1. Thus F(x) satis
fies (1) (obviously F(x) ^ 0 for - 1 < K 1 ) and F(x) ^f(x) in - 1 , + 1 , 
equality occurring only for —l,y, + 1 . Thus cF>Cf. Hence we may 
suppose that for i > 2 all the Xi are of the same sign ; without loss of 
generality we may suppose them negative. Suppose that 

b f(a)f(b) = d\ 

We can suppose that — l<a<y<b<l. We now prove that 

(5) b — y < y — a. 

For if not then 

a = e/. 

(6) 

that is, 

I ƒ'(»)! > I ƒ'(")!> ƒ(*)<ƒ(*). 

( » - y ) I I ( * - yd I ƒ'(<*)! = (y - a)Jl (yi - a) 

y > ytj f = l , 2, • • • , » — 2, 

where & — j ^ y — a and all other factors in | ƒ'(&) | are greater then the 
corresponding factors i n / ' ( a ) . This proves the first inequality of (6). 
To prove the second inequality we remark that from what has just 
been said it follows that for m—y=y — u%, — 1 <^2<;y < ^ i < l , w e h a v e 

\f'(u1)\>\f(u>)\, 

and since b — z^y — a the second inequality follows by integration. 
By simple calculation it follows from (6) that 

f(b - e)f(a - «) > ƒ(«)ƒ($) = d\ e > 0 sufficiently small. 

Thus b — a<Cf. This contradiction proves (5). 
Let xn be the root of f(x) with greatest absolute value. Consider 

the new polynomial 
%\f *>n 

fl(x) = C f(x), Xn = Xn — Ô, 8 > 0, 
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where c is chosen in such a way that max^i^^ i fi(x) = 1. Then we 
prove 

(7) cfl > cf. 

To show (7) it will suffice to show that Cf is an increasing function of 
| xn\. Choose 5 so small that if we denote by y(1) the root of/i (x) in 
( — 1 , + 1 ) we have b— yi<yi — a (it is clear that yi<y). 

Put now 

c = 
l xn— yx 

f(yi) xn — à - yi 

(Evidently cfi(x) satisfies (1).) 
Now 

a — xn + à b — xn-\- b 
c*Ma)Mb) = c2 — — f(a)f(b) 

(X XJI 0 Xfi 

> (I+——) (I + -I—) (——j ) W » 
\ a — xj \ b — xj \1 + d/yi — xj 

(that is,f(yi) <1 ) . But from (5) we have 

/ 1 1 \ 25 25 
Ô ( + ) > > 

\a — xn b — Xn/ (a + b \ yi — ^n 

and 

> > 

Thus 

(a — xn){b — *w) /a + b \ 2 (yi — #n)2 

c2fx(a)Mb) > f(a)f(b) = d\ 

Hence (7) is proved. 
If \xn\ tends to infinity/(x) tends to F(x) =f(x)/(x — xn), which is 

of degree n — 1. From (7) it follows that cF>Cf, which proves the 
theorem. 

Let f(x) be a polynomial of degree n all the roots of which are in 
the interval ( — 1 , + 1 ) ; and further let m a x _ n ^ i | / (#) | = 1 . For which 
polynomial is 

i l /w I 
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maximal? I was not able to answer this question but it seems very 
likely that the maximum is reached for f(x) = Tn(x/c)9 where c = l/xn, 
and xn is the greatest root of Tn(x) (the nth. Tchebicheff polynomial). 
Hence Tn(l/c) = Tn{ — \/c) = 0 and all other roots of Tn(x/c) are in 
( — 1, + 1 ) . I t is easy to see that Tn(x) satisfies the following condi
tion : Let Xi and Xi+i be two consecutive roots of Tn(x) ; then 

I | Tn(x) | = dn, 
Xi+i X% J x{ 

where dn is independent of i, and lim dn = 2/ir. 
This fact suggests the following conjecture which is a generalization 

of the previous one : Let ƒ (x) be a polynomial of degree n all the roots 
of which are in ( — 1, + 1 ) , such that m a x . ^ ^ i \f(x)\ = l a n d let Xi 
and Xi+i be two consecutive roots of ƒ(#) ; then 

| ƒ 0 ) I ^ dn(xi+i - Xi). 
Xi 

Equality holds only for Tn(cx). 
It seems very likely that the following result holds: Let 0(0) be 

a trigonometric polynomial all the roots of which are real, further let 
maxo^0^27r 10(0) | = l .Then 

f *|*W| £4. 
J o 

Let ƒ(x) be a polynomial of degree n with leading coefficient 1 and 
all roots in ( — 1, + 1 ) ; then the sum of the intervals in ( — 1, + 1 ) for 
which \f{x)\ ^ 1 does not exceed 1. The proof is quite simple. Evi
dently 

ƒ(#)ƒ(— x) = H (xi — x ) ^ 1 for | x\ ^ 1, 

equality occurring only for x = 0, \xi \ = 1. Thus one of the numbers 
f(x) or ƒ(— x) is less than 1, which establishes the result. I t is also 
easy to see that if the sum of the intervals in question is exactly 1 
then f(x) = (1 ±x)n. I t would not be difficult to prove the following 
slightly more general result: Let f(x) have leading coefficient 1 and all 
roots in ( — 1 , +1 ) ; then if - l < a < 0 < k l at least one of the num
bers | f (a) | or |/(6) | is less than 1. These problems become very much 
more difficult if instead of the interval — 1 , + 1 we consider the unit 
circle. The question would be to determine the polynomial (or poly-
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nomials) of degree not greater than n with leading coefficient 1 and 
all roots in the unit circle such that the area of the set of points for 
which \f(x)\ ^ 1 shall be as big as possible. A first guess would be 
f{x) — (x — a)n, | a | = 1, but it can be shown that for sufficiently large n 
this is not the case. The complete solution of this problem seems diffi
cult. 

Mr. Eröd2 proved that there exists a constant c independent of n 
such that for a polynomial of degree n satisfying the above conditions 
the area of the set of points for which \f(x)\ ^ 1 is not less than c. 
The best value of c is not known. 

INSTITUTE FOR ADVANCED STUDY 

2 Oral communication. 


