THE GENERALIZATION OF A LEMMA OF M. S. KAKEYA

J. GERONIMUS

We shall prove the following:

LEMMA. It is always possible to find the unique polynomial

$$\phi^*(z) \,=\, \sum_{k=0}^{2s} \gamma_k^* z^k$$

of degree 2s possessing the following properties:

I.
$$\phi^*(z) = ci^2(z)\tau(z)\tau^*(z), \qquad c = \text{const.},$$

the polynomial i(z) of degree $\sigma \leq s$ having all roots in the domain |z| > 1:

$$i(z) = \prod_{i=1}^{\sigma} (z - a_i), \quad |a_i| > 1, \quad i = 1, 2, \cdots, \sigma,$$

and the polynomial $\tau(z)$ being of degree $\nu = s - \sigma$:

$$\tau(z) = \prod_{i=1}^{\nu} (z - \alpha_i), \qquad \tau^*(z) = z^{\nu} \overline{\tau} \left(\frac{1}{z}\right) = \prod_{i=1}^{\nu} (1 - z \overline{\alpha}_i).$$

II. It is subject to the conditions

$$\omega_i(\phi^*) = \sum_{k=0}^{2s} \gamma_k^* c_k^{(i)} = d_i, \qquad i = 0, \, 1, \, \cdots, \, s,$$

the given linear functionals ω_i being such that every polynomial $\phi(z)$ of degree $n \ge 2s$ for which

$$\omega_i(\phi) = \sum_{k=0}^{2s} \gamma_k c_k^{(i)} = 0, \quad (i = 0, 1, \cdots, s), \qquad \phi(z) = \sum_{k=0}^n \gamma_k z^k,$$

has s+1 roots at least in the domain |z| < 1.

In the particular case when

$$\omega_i(\phi) = \phi^{(i)}(z_k), \qquad |z_k| < 1,$$

this lemma has been proved by M. S. Kakeya [1];¹ without being aware of his result we have proved this lemma in the case²

¹ Numbers in brackets refer to the bibliography at the end.

² In [1] and [2] one may find the application of this lemma to some extremal problems.

J. GERONIMUS

$$\omega_i(\phi) = \frac{1}{i!} \left(\frac{d^i \phi}{dz^i} \right)_{z=0}, \qquad i = 0, 1, \cdots, s.$$

[February

In order to prove this lemma in the most general case we consider the following extremal problem:

PROBLEM. To find the minimum of the integral

(1)
$$L(b) = \int_0^{2\pi} |t(z)|^2 b(\theta) d\theta, \qquad z = e^{i\theta},$$

t(z) being the given polynomial of degree s with $t(0) \neq 0$ and $b(\theta)$ being a trigonometric polynomial of order $n \geq 2s$:

$$b(\theta) = R\left\{z^{n}\overline{\phi}\left(\frac{1}{z}\right)\right\} = R\sum_{k=0}^{n}\overline{\gamma}_{k}e^{i(n-k)\theta}, \qquad z = e^{i\theta},$$

subject to the conditions³

(2)
$$\omega_i(b) = \omega_i(\phi) = \sum_{k=0}^{2s} \gamma_k c_k^{(i)} = d_i, \quad i = 0, 1, \cdots, s.$$

The fundamental property of our functionals ω_i yields at once that every trigonometric polynomial $b(\theta)$ subject to the conditions

$$\omega_i(b) = 0, \qquad \qquad i = 0, 1, \cdots, s,$$

has in $(0, 2\pi)$ no more than 2(n-s-1) changes of sign. It is clear that there exists a solution of our problem. Further, the necessary conditions for an extremum are

sgn
$$b^*(\theta) \mid t(z) \mid^2 = R \sum_{k=n-2s}^{\infty} A_k z^k$$
, $z = e^{i\theta}$,

whence we find at once that the Fourier expansion of sgn $b^*(\theta)$ is of the form

sgn
$$b^*(\theta) = R \sum_{k=n-s}^{\infty} B_k z^k$$
, $z = e^{i\theta}$.

We have shown in [2] that every trigonometric polynomial with this property must be of the form

$$b^{*}(\theta) = R\{\bar{c}z^{n-2s+\nu}q^{2}(z)\}\tau(z)\bar{\tau}(1/z), \qquad z = e^{i\theta},$$

q(z) being a polynomial of degree $\sigma \leq s$ all of whose roots lie in the domain |z| < 1, and $\tau(z)$ being a polynomial of degree $\nu = s - \sigma$.

94

³ The functionals ω_i are the same as above.

The polynomial $b^*(\theta)$ for which the minimum is attained is unique. If there were two such polynomials, $b_1^*(\theta)$ and $b_2^*(\theta)$, then we would have

$$L(b_1^*) \leq L\left(\frac{b_1^* + b_2^*}{2}\right) \leq L(b_1^*);$$

then $b_1^*(\theta)$ and $b_2^*(\theta)$ would change sign at the same points, that is, the polynomial

$$b_1^*(\theta) - b_2^*(\theta) = R\{z^{n-2s+\nu}q^2(z)\}\{\bar{c}_1 \mid \tau_1(z) \mid^2 - \bar{c}_2 \mid \tau_2(z) \mid^2\}, \quad z = e^{i\theta},$$

would have at least $2(n-\nu)$ changes of sign in $(0, 2\pi)$; but since

$$\omega_i(b_1^* - b_2^*) = 0, \qquad i = 0, 1, \cdots, s,$$

مد

the polynomial $b_1^*(\theta) - b_2^*(\theta)$ cannot have more than 2(n-s-1) changes of sign in $(0, 2\pi)$; this contradiction proves the unicity of the polynomial solving our problem. Thus we find that there exists the unique polynomial $b^*(\theta)$ minimizing (1) under conditions (2) and it must be of the form

$$\begin{split} b^*(\theta) &= R \big\{ \bar{c} z^{n-2s+\nu} q^2(z) \tau(z) \bar{\tau}(1/z) \big\} \\ &= R \big\{ \bar{\gamma}_0^* z^n + \bar{\gamma}_1^* z^{n-1} + \cdots + \bar{\gamma}_{2s}^* z^{n-2s} \big\}, \qquad z = e^{i\theta}. \end{split}$$

Since the real parts of two polynomials coincide on the unit circle, these polynomials are identical, that is,

$$\bar{c}z^{n-2s}q^2(z)\tau(z)\tau^*(z) = \bar{\gamma}_0^*z^n + \bar{\gamma}_1^*z^{n-1} + \cdots + \bar{\gamma}_{2s}^*z^{n-2s},$$

whence we find finally

$$\phi^*(z) = \gamma_0^* + \gamma_1^* z + \cdots + \gamma_{2s}^* z^{2s} = c i^2(z) \tau(z) \tau^*(z),$$

where

$$i(z) = q^*(z) = z^{\sigma} \bar{q}(1/z).$$

Thus we have found the polynomial $\phi^*(z)$ satisfying all the conditions of our lemma.

BIBLIOGRAPHY

1. S. Kakeya, Maximum modulus of some expressions of limited analytic functions, Transactions of this Society, vol. 22 (1921), pp. 489–504.

2. J. Geronimus, On a problem of F. Riesz and on the generalized problem of Tchebycheff-Korkine-Zolotareff, Bulletin de l'Académie des Sciences de l'URSS., vol. 3 (1939), pp. 279–288.

TECHNOLOGICAL INSTITUTE, KHARKOW, U.S.S.R.

1941]