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Let Gz denote a region in the s-plane and let w =f(z) be a function 
of z denned for z<Z.Gz which has the following properties: (1) w =f(z) 
is analytic and single-valued for zC.Gz, (2) zQ.Gz implies that f(z)CGz, 
(3) to each point WoC.Gz there correspond m and only m points z^ 
(ft = 1,2, • • • ,m) contained in Gz such that ƒ (zf]) =w0 (£ = 1,2, • • -,m) 
where following the usual convention we count the 4&) according to 
their multiplicities. Then w=f(z) is said to define a (1, m) conformai 
map ofGz onto itself. Such maps have been studied by Fatou2 and Julia3 

for the case where Gz is simply-connected, and by Radó4 who treated 
multiply-connected regions as well. Among the results which Radó 
established is the following theorem: 

Let Gz be a region of finite connectivity p ( > 1 ) ; then there exists no 
(1, m) conformai map of Gz onto itself for m>\. 

Let us remark with Radó that the theorem is no longer valid if 
Gz is of infinite connectivity, as simple examples from the theory of 
the iteration of rational functions show.5 Rado's proof of the theorem 
just cited is based on the possibility of mapping one-to-one and con
formally a region of finite connectivity p, none of the components of 
its boundary reducing to points, onto a region of connectivity p, the 
boundary of which consists of p disjoint circles. Other types of canoni
cal regions yield the same result, notably one due to Koebe.6 I t is the 
object of the present note to establish Rado's theorem directly with
out appeal to the possibility of mapping one-to-one and conformally 
the region Gz onto a canonical region. Our tools are the theory of 
iteration and a simple modification of Nevanlinna's principle of har
monic measure.7 

Let Gz, the region we are going to study, have as its boundary p 
(>1 ) disjoint continua Tk (& = 1, 2, • • • , p). I t is evident that we 

1 Presented to the Society, April 27, 1940, under the title A note on a theorem of 
Radó. 

2 P. Fatou, Bulletin de la Société Mathématique de France, 1919. 
3 G. Julia, Comptes Rendus de l'Académie des Sciences, Paris, vol. 166 (1918). 
4 T. Radó, Acta Szeged, vol. 1 (1922). 
5 G. Julia, Journal de Mathématiques Pures et Appliquées, 1918. 
6 P. Koebe, Acta Mathematica, vol. 41. 
7 R. Nevanlinna, Eindeutige analytische Funktionen, chap. 3. 
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may assume without loss of generality that the Tk are all closed 
Jordan curves. Further let w—f(z) define a (1, m) conformai map 
of Gz onto itself. In Radó's paper cited above, it is shown that if 
w=f(z) defines a (1, m) conformai map of Gz onto itself, then when
ever z tends to the boundary of Gz> so does ƒ(z), in such a manner 
that whenever z tends to a given component I1*; of the boundary, then 
f(z) tends to one and only one component of the boundary Yik where 
the index h depends on k. Now the relation k—>h (k = 1, 2, • • • , p) 
defines a permutation of the indices 1, 2, • • • , p. 

We shall understand by ƒ „(s), the nth iterate off(z), that function 
defined by the recursive relations 

(A) ƒ„(*) = z, Mz) = ƒ(*), • • • , ƒ„(*) S f[fn-!(z)}. 

By the definition of w =f(z) it is clear that the definition given by (A) 
for fn(z) is meaningful. Since the relation k—>h defines a permutation 
of the indices 1,2, • • • , p} a suitably chosen power of this permuta
tion is the identity. Hence for a properly chosen whole number n0y 

fnQ(z) has the property that when z tends to a component Tk of the 
boundary of GZy then fno(z) tends to exactly the same component T^. 
Let us denote fno(

z) by F(z)-
We are now in a position to demonstrate Rado's theorem directly. 

By the harmonic measure ofz with respect toTk, denoted by co(z, Tk, Gz) 
we understand that harmonic function defined for z(Z.Gz which is 
single-valued and bounded for z<Z_Gz and further takes on the bound
ary value 1 on Tk and the boundary value 0 on all the components of 
the boundary of Gz exclusive of T^.8 

The relations 

(B) u(F(z), Tkl Gz) s «(*, r*f Gz), & = 1, 2, • • • , £, 

are an immediate consequence of the principle of the maximum for 
harmonic functions. For, as z tends to a given component of the bound
ary of GZ1 F(z) tends to the same component. Hence co(F(z), Tk, Gz) 
has the same boundary values as œ(z, Tk> G»), hence the identity. To 
establish Rado's theorem we need consider only one of these identi
ties, say 

(C) œ(F(z),ThGz) s w(s, r i , G,). 

Let ZQ be a point lying in GZl and let œ(z0y I \ , Gz) =Xo (0 <Xo < 1). Then 
our identity (C) implies 

w(Fn(z0), ThGz) = \o, 
8 R. Nevanlinna, ibid. 
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where Fn(z) is the nth iterate of F(z) for w = l, 2, • • • . Hence if z is 
on a given level curve defined by œ(z> Tu Gz) =X (0<X<1) , Fn(z) is 
on the same level curve for n = 1, 2, • • • . This permits us to conclude 
that no limit function of the sequence {Fn(z)} is a constant. From 
this fact we infer that w = F(z) defines a (1, 1) conformai map of Gz 

onto itself, and hence so does w=f(z); that is, m cannot exceed one. 
Suppose contrary to our assertion that m > 1. Then w = F(z) would 

define a (1, mn0) conformai map of Gz onto itself and w = Fn(z) would 
define a (1, mnm) conformai map of Gz onto itself. Let {Fkn(z)} be a 
convergent subsequence of {Fn(z)} and let F0(z) denote the limit 
function of this subsequence. A point WQ has, under the map defined 
by w~Fkn{

z)i tnknno antecedents all of which lie on the level curve 
defined by oo(z, Tu Gz)=œ(wo, Tu Gz). But by Hurwitz's theorem, 
for kn sufficiently large Fkn(z)—w0 and F0(z)—w0 have the same 
number of zeros, and this is manifestly impossible. Hence m cannot 
exceed one. 

I t is interesting to note that the technique employed in the present 
proof of Rado's theorem, that is, a combined use of the theory of 
iteration and of an extended form of the principle of harmonic meas
ure (the modification consisting in the fact that we did not require 
the continuity of F(z) on Ti) may be applied to other problems in the 
theory of the conformai mapping of multiply-connected regions. In 
particular, such a technique permits us to conclude that the number 
of (1, 1) conformai maps of a given multiply-connected region of finite 
connectivity p, where p>2, bounded by p disjoint continua is finite. 
Koebe's proof of this theorem is based on the fact that the region in 
question can be mapped one-to-one and conformally onto a canonical 
region. We shall not give in the present note the details of a direct 
proof of this theorem. Let us remark however that it is based on 
the fact that for p>2 each of the harmonic functions CO(JS, r&, Gz) 
(fe = l, 2, • • • , p) has precisely p — 2 (>0 ) critical points. A study of 
the level curves containing these critical points yields the desired re
sult. 
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