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An interesting problem in the theory of quasi-groups is to deter
mine how strong an associative law must be assumed in order to ob
tain a theory of normal subquasi-groups similar to that of ordinary 
groups. The properties of normal subgroups which it is desirable to 
retain in the non-associative case are, first, that they form a Dede-
kind structure, and second, that each one gives rise to a quotient 
group homomorphic to the whole group. In this note we shall take the 
latter property as the definition of normality and show that the 
former follows from it under very general conditions. 

We shall understand by a quasi-group G a system of elements 
satisfying the following two postulates: 

I. PRODUCT AXIOM. Any ordered pair of elements a, b of G has a 
unique product ab which also belongs to G. 

II . QUOTIENT AXIOM. For any two elements a and b of G there exist 
unique elements x and y of G such that 

ax — b, ya = b. 

We shall make one further assumption, namely that there exist 
left coset expansions with respect to any subquasi-group H of G. 
In other words, if H is any subquasi-group, the cosets aH and bH 
are either identical or have no elements in common. This assumption 
has been shown by Hausmann and Ore [ l ] to be equivalent to the 
following : 

I I I . W E A K ASSOCIATIVE LAW. If a and b are arbitrary elements of 
G and Co a fixed element, let do be determined so that (ab)c0 = ado. Then 
for any c 

(ab)c = ad, 

where d belongs to the quasi-group {co, do, c} generated by c0, d0 and c. 

Since no confusion can arise, we shall for convenience use the term 
subgroup for subquasi-group and quotient group for quotient quasi-
group, without implying thereby that the systems in question are 
associative. 

I t should be noted that a theory of normal subgroups has been 
given by Hausmann and Ore [ l ] based on the definition of a normal 
subgroup as a subgroup H such that aH — Ha for all a in G. This 

134 



NORMALITY IN QUASI-GROUPS 135 

theory requires that G should satisfy associative laws considerably 
stronger than III in order that the normal subgroups so defined shall 
have the desired properties. To overcome this difficulty we shall adopt 
instead the following: 

DEFINITION : A subgroup H o f G shall be called normal if 

(aH)(bH) = (ob)H, 

for all elements a and b of G. 

This is the same definition used in a previous paper by the au
thor [2] where it was applied, however, only to quasi-groups satisfy-
ng rather special associative laws. It will be shown here that the 
results of that paper concerning normal subgroups can be extended 
to any quasi-group satisfying I I I . 

Comparing this definition with that of Hausmann and Ore, it is 
seen that neither one implies the other. Under the latter all subgroups 
of a commutative quasi-group are normal, while under the former 
this property is enjoyed by the "abelian" quasi-groups [2] which 
satisfy the law (ab)(cd) = (ac){bd). In a Suschkewitsch quasi-group [3] 
(having unique right unit e and satisfying a(bc) = (ab)(ec), the right 
unit e is a subgroup which is normal in the sense of this paper but not 
in the sense of Hausmann and Ore. 

Examples of quasi-groups satisfying III but not satisfying the 
stronger laws previously discussed can easily be constructed by re
arranging the elements in the Cayley square of a group, or known 
quasi-group, so as to destroy the associativity without disturbing the 
existence of cosets. The following, for example, 
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satisfies III since cosets exist with respect to all subgroups. I t is easily 
verified that it satisfies none of the laws previously discussed by the 
author nor the laws A2, AS} A4 or As of Hausmann and Ore. 
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It is natural to require next that every element of a coset aH shall 
define the same coset aH, or in other words that (ah)H = aH for all h 
in H. In this connection we have the following: 

THEOREM 1. The necessary and sufficient condition that every coset aH 
may be defined by any one of its elements is that H contain the right unit 
of every element of G. 

PROOF. If H contains all right units of G, then aH= (ah)H for all h 
in H, since each coset contains the element ah. Conversely if 
aH= (ah)II for all h in i^and all a in G, then ah must belong to (ah)H. 
Hence H contains the right unit of ah for all a m G and therefore 
contains all right units of G. 

The main object of this note is to prove that in any finite quasi-
group the normal subgroups which contain all right units of G form 
a Dedekind structure. With a slight strengthening of the definition 
of normality the result may also be proved in the infinite case. We 
shall assume for the present, however, that G is finite. 

THEOREM 2. If H and K are normal subgroups of G and contain all 
right units of G, their crosscut HC\K = D is also normal. 

PROOF. From the normality of H and K we have 

(aD)(bD) C (ab)D, 

and since D is finite the equality must hold. Moreover D is not void 
since it contains all right units of G. 

THEOREM 3. If H and K are normal and contain all right units of G, 
their union H\JK consists of all products hk where h belongs to H and 
ktoK. 

The proof of this theorem is similar to that of Theorem 7 of the 
author's previous paper already cited. The union HVJK may there
fore be written as the product HK. 

THEOREM 4. If H and K are normal, and contain all right units of G, 
their union is also normal. 

PROOF. Using the notation ea for the right unit of a, we have, from 
the normality of H and K, 

[a(HK)][b(HK)] = [(aea)(HK)][(beb)(HK)} 

= [(aH)K][(bH)K] = [(aH)(bH)]K= [{ab)H]K 

= [(ab)eah][HK] = (ab)(HK), 

which completes the proof. 
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THEOREM 5. The normal subgroups of G which contain all right units 
of G form a Dedekind structure. 

PROOF. From Theorems 2 and 4 these subgroups form a structure. 
It is only necessary, therefore, to show that if M~2)H, 

M r\ (H\J K) C H\J (M H K). 

This follows as usual since every element of the left-hand side has the 
form hk and belongs to M. Hence k belongs to MP\K since h belongs 
to M. 

In establishing Theorem 5 we have used the finiteness of G in the 
proofs of Theorems 2, 3 and 4. This can be avoided by strengthening 
the definition of normality as follows: 

A subgroup H shall be called normal in G if for all elements a, b 
of G and every element h of H we have 

(ah)(bH) = (ab)H, (aH)(bh) = (ab)H. 

This of course implies the other definition and is equivalent to it in 
case G is finite. This strengthening of the definition enables us to 
prove the quotient axioms for the union and crosscut in Theorems 2 
and 3. For example, for the union, the equation x(hikx) =&2&2 has a 
unique solution of the form x = hk. For choosing h so that hh\ — h^ it 
follows from (2) that there exists an element k of K such that 

(hk)(hiki) = hiki. 

For the proof of Theorem 4 we have as in the finite case 

a(HK) = (aea)(HK) C (aH)K. 

But in the infinite case it is necessary to show also that (aH)K 
(Za(HK). This follows from III , applied in the form of Theorem 7, 
Chapter I, Hausmann and Ore. 

From Theorem 5 the usual theorems concerning normal subgroups 
follow. In particular, the Jordan-Holder theorem for principal chains, 
and the Schmidt-Remak decomposition theorems, as proved by Ore 
[4] for arbitrary Dedekind structures, will all hold. One interesting 
question arises which has no counterpart in ordinary groups, namely 
whether the subgroup R, generated by the right units of G, is neces
sarily normal. Although there seems to be no obvious reason to be
lieve that this is true, I have no counterexample. If R is not always 
normal the question arises whether infinite quasi-groups exist in which 
the Dedekind structure of normal subgroups has no unit element. 
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