POWER SERIES THE ROOTS OF WHOSE PARTIAL SUMS LIE IN A SECTOR¹

LOUIS WEISNER

If the roots of the partial sums of a power series $f(z) = \sum a_n z^n$ lie in a sector with vertex at the origin and aperture $\alpha < 2\pi$, the power series cannot have a positive finite radius of convergence.² But if f(z)is an entire function, the roots of its partial sums may lie in such a sector. The question arises: what restrictions are imposed on f(z) by the requirement that α be sufficiently small, say $\alpha < \pi$? According to a theorem of Pólya the order of f(z) must be not greater than 1 if the radius of convergence of the power series is positive.³ Without this assumption the investigation which follows shows that if $\alpha < \pi$, f(z) is an entire function of order 0. This result was obtained by Pólya for the case in which $\alpha = 0.4$

LEMMA. If the complex numbers z_1, \dots, z_n $(z_1 \dots z_n \neq 0)$ lie in a sector with vertex at the origin and aperture $\alpha < \pi$, then

(1)
$$\frac{n \cos \alpha/2}{\left|\sum_{k=1}^{n} z_{k}^{-1}\right|} \leq \left|z_{1} \cdots z_{n}\right|^{1/n} \leq \frac{1}{n} \sec \alpha/2 \left|\sum_{k=1}^{n} z_{k}\right|.$$

When $\alpha = 0$ equality occurs if and only if $z_1 = \cdots = z_n$. When $\alpha > 0$ equality occurs if and only if n is even and n/2 of the numbers are equal to re^{i\phi} $(r > 0; 0 \le \phi < 2\pi)$ and the other n/2 numbers are equal to re^{i(\phi+\alpha)}.

Suppose first that the sector is $-\alpha/2 \leq \alpha/2$. Let the *n* numbers be

$$z_k = \left| z_k \right| e^{i\theta_k}, \qquad -\alpha/2 \leq \theta_k \leq \alpha/2; \ k = 1, \cdots, n.$$

Since

(2)
$$\sum_{k=1}^{n} z_{k} = \sum_{k=1}^{n} |z_{k}| \cos \theta_{k} + i \sum_{k=1}^{n} |z_{k}| \sin \theta_{k}$$

¹ Presented to the Society, April 27, 1940.

² This follows from Jentzsch's theorem: every point on the circle of convergence of a power series is a limit point of roots of its partial sums. See R. Jentzsch, *Unter*suchungen zur Theorie der Folgen analytischer Funktionen, Acta Mathematica, vol. 41 (1917), p. 219; E. C. Titchmarsh, Theory of Functions, 1932, p. 238.

³ G. Pólya, Ueber Annäherung durch Polynome deren sämtliche Wurzeln in einen Winkelraum fallen, Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, 1913, pp. 325-330.

⁴ G. Pólya, Ueber Annäherung durch Polynome mit lauter reellen Wurzeln, Rendiconti del Circolo Matematico di Palermo, vol. 36 (1913), pp. 279-295.

POWER SERIES

(3)
$$\left|\sum_{k=1}^{n} z_{k}\right| \geq \sum_{k=1}^{n} \left|z_{k}\right| \cos \theta_{k} \geq \cos \alpha/2 \sum_{k=1}^{n} \left|z_{k}\right|.$$

Now

(4)
$$\frac{1}{n}\sum_{k=1}^{n}|z_{k}| \geq |z_{1}\cdots z_{n}|^{1/n}$$

Consequently

$$\frac{1}{n}\left|\sum_{k=1}^{n} z_{k}\right| \geq \cos \alpha/2 \left|z_{1} \cdots z_{n}\right|^{1/n}.$$

Since the numbers $z_1^{-1}, \dots, z_n^{-1}$ also lie in the sector $-\alpha/2 \leq am z \leq \alpha/2$, we have

$$\frac{1}{n}\left|\sum_{k=1}^n z_k^{-1}\right| \ge \cos \alpha/2 \left|z_1^{-1} \cdots z_n^{-1}\right|^{1/n}.$$

Combining the last two inequalities, (1) results.

When $\alpha = 0$, (1) reduces to the well known relation among the harmonic, geometric and arithmetic means of n positive numbers. Here equality occurs if and only if $z_1 = \cdots = z_n$.

If equality occurs in (1) it also occurs in (3) and (4). By (4), $|z_1| = \cdots = |z_n|$. By (3), $\cos \theta_k = \cos \alpha/2$; hence $\theta_k = \pm \alpha/2$ $(k = 1, \dots, n)$. By (2), $\sum_{k=1}^{n} \sin \theta_k = 0$. Therefore if $\alpha > 0$, *n* must be even, and *n*/2 of the numbers equal $re^{-i\alpha/2}$, while the other *n*/2 numbers equal $re^{i\alpha/2}$. Conversely, when these conditions are satisfied, equality is attained in (1).

If the numbers are in the sector $\phi \leq am \ z \leq am \ (\phi + \alpha)$, we apply the transformation

$$z' = e^{-i(\alpha/2 + \phi)} z,$$

which rotates this sector into the sector $-\alpha/2 \leq am z \leq \alpha/2$ without affecting the value of any member of (1).

THEOREM. If, for each $n \ge n_0$, the roots of the partial sum of degree n of the formal power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ lie in some sector with vertex at the origin and aperture $\alpha < \pi$,⁵ then f(z) is an entire function of order 0.

The case in which f(z) is a polynomial is trivial and is excluded from

⁵ While α is independent of n, we do not require that there shall be one sector which contains the roots of all the partial sums of degree $n \ge n_0$; the lines bounding the sector may be different for different values of n.

LOUIS WEISNER

consideration. We shall suppose $a_0 \neq 0$; otherwise a power of z could be removed from f(z) without affecting the theorem. Let

$$f_n(z) = \sum_{k=0}^n a_k z^k, \qquad n \ge n_0.$$

By the Gauss-Lucas theorem the roots of $f'_n(z)$ are also in the sector which contains the roots of $f_n(z)$, and the only roots of $f'_n(z)$ that lie on the boundary of the sector are multiple roots of $f_n(z)$; hence $f'_n(0) \neq 0$. Repeated applications of this argument yield the result that $a_k \neq 0$ $(k=0, 1, \cdots)$.

According to the lemma, if z_1, \cdots, z_n denote the zeros of $f_n(z)$,

(5)
$$nc \left| \frac{a_0}{a_1} \right| \leq \left| \frac{a_0}{a_n} \right|^{1/n} \leq \frac{1}{nc} \left| \frac{a_{n-1}}{a_n} \right|, \qquad c = \cos \alpha/2; n \geq n_0.$$

From the first two members of this inequality it follows that $|a_n|^{-1/n} \rightarrow \infty$ with *n*. Therefore f(z) is an entire function. If ρ is its order,

(6)
$$\frac{1}{\rho} = \liminf_{n \to \infty} \frac{\log |a_n|^{-1}}{n \log n} \cdot$$

From the last two members of (5) we have

(7)
$$\frac{\frac{1}{n}\log\frac{1}{|a_n|} - \frac{1}{n-1}\log\frac{1}{|a_{n-1}|}}{\geq \frac{1}{n(n-1)}\log|a_0| + \frac{1}{n-1}\log nc}$$

Let $m = \max(n_0, 4), n > m$. Substituting $n = m, m+1, \dots, n$ in (7), and adding, we obtain

$$\frac{1}{n}\log\frac{1}{|a_n|} \ge \frac{1}{m-1}\log\frac{1}{|a_{m-1}|} + \log|a_0|\sum_{s=m}^n\frac{1}{s(s-1)} + \sum_{s=m}^n\frac{\log s}{s-1} + \log c\sum_{s=m}^n\frac{1}{s-1}.$$

Now

$$\sum_{s=m}^{n} \frac{\log s}{s-1} > \sum_{s=m}^{n} \frac{\log (s-1)}{s-1} > \frac{1}{2} \log^2 n - \frac{1}{2} \log^2 (m-1),$$
$$\sum_{s=m}^{n} \frac{1}{s-1} > \log n - \log (m-1).$$

Consequently

(8)
$$\frac{1}{n}\log\frac{1}{|a_n|} > A + \frac{1}{2}\log^2 n + \log c \log n,$$

where A is bounded as $n \rightarrow \infty$. Comparing (6) and (8), we conclude that $\rho = 0$.

Hunter College of the City of New York

1941]