
DIVISORS OF ZERO IN MATRIC RINGS 

NEAL H. MCCOY 

1. Introduction. An element a of a ring 6* is a divisor of zero in 5 if 
there exists a nonzero element x of S such that ax—0, or a nonzero 
element y of S such that ya = 0. The purpose of the present note is 
to obtain several theorems about divisors of zero in matric rings 
which, although quite elementary in character, have apparently not 
been previously noted. Throughout, unless otherwise stated, R will 
be used to denote an arbitrary commutative ring with unit element. 
Let Rn denote the ring of all matrices of order n with elements in R, 
and R\\] the ring of polynomials in the indeterminate X with co­
efficients in R. If A is an element of Rn, we shall denote by 
ƒ(X) = |X—^4 | the characteristic polynomial of A, and thus /(X) is 
an element of i?[X], with leading coefficient 1. The ideal m of all ele­
ments g(X) such that g(A) = 0 is the minimum ideal of A. If the minors 
of X—A of order n — 1 are denoted by ha(k) (i, j = l, 2, • • • , n), it 
has been shown in a previous paper1 that g(K) = 0 (m), if and only if 

g(X)A.-,-(X) ^ 0 (/(X)), i,j= 1, 2, • • • ,fi. 

If R[A] denotes the subring of Rn generated by A together with 
the unit element of Rny which we identify with the unit element of JR, 
then the elements of R [A ] are the polynomials in A with coefficients 
in R. It is quite easy to show that A is a divisor of zero in Rn if and 
only if \A\ is a divisor of zero in R. But we shall show, in §2, that A 
is actually a divisor of zero in R [A ] if it is a divisor of zero in Rn—a 
fact which is almost trivial if R is a field. This theorem is used in the 
following section in which we define, by means of the Sylvester de­
terminant, the resultant ^ ( / , g) of two elements/(X) and g(K) of R\\] 
and show, following Frobenius, that if /(X) has leading coefficient 
unity, 

where A is any matrix having /(X) as characteristic polynomial. It 
then follows readily that an element g(X) of i?[X] is prime to2 m if and 

1 Neal H. McCoy, Concerning matrices with elements in a commutative ring, this 
Bulletin, vol, 45 (1939), pp. 280-284. Hereafter, this paper will be referred to as M. 

2 For definitions of this term, see W. Krull, Idealtheorie in Ringen ohne Endlich-
keitsbedingung, Mathematische Annalen, vol. 101 (1929), pp. 729-?'44. This will be 
referred to later as K. A definition will also be found in §3 of the present paper. 
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only if it is prime to jf(X), which in turn is true if and only if ^ ( / ,g) 
is not a divisor of zero in R. 

If 4̂ is such that m = (jf(X)), we may say, following Sylvester, that A 
is not derogatory. Let us, as above, denote the minors of X—A of 
order n — 1 by hu(h), and set 

a = (All(X), Al2(X), • • • , AWn(X)). 

We conclude our remarks by showing that, if each ideal in R has a 
finite basis, A is not derogatory if and only if a contains an element 
of R which is not a divisor of zero in R. 

2. Divisors of zero in R[A ]. We shall now prove 

THEOREM 1. An element A of Rn is a divisor of zero in R[A ] if and 
only if | A \ is a divisor of zero in R. 

The necessity follows easily by a familiar argument. Suppose that 
A is a divisor of zero in R [A ] and hence that there exists a nonzero 
element X of R[A ] such that AX = 0. In other words, if A = (a*,-), the 
following system of equations, 

n 

J2 anxj = 0, i = 1, 2, • • • , n, 

has a solution (xu #2, * * • , %n) in R with some xa^0. Multiply these 
equations in order by the respective cofactors of ai«, #2«, • • • , #n« in 
| - 4 | , and add. There results x«|^4| =0 , and hence \A\ is a divisor 
of zero in R. 

We now pass to the second part of the proof. Accordingly, we as­
sume that there is an element ky^O of R such that k\A\ = 0, and shall 
show that A is a divisor of zero in 2? [-4]. Our method is to assume 
that A is not a divisor of zero in i?[^4] and obtain a contradiction. 

First, we prove the following 

LEMMA. If B and C are elements of Rn and k is an element of R such 
thatkB = kC, thenk\B\ =jfe|c|. 

This follows from the fact that kbi3- = kcij, where B = (bij) and 
C=(c»-,-), together with the following calculation. If b — bi^bi^ - • • binn 

is any term, except possibly for sign, in the expansion of \B\, and 
c — Ci^d^ - - - dnn the corresponding term in the expansion of | C | , 
then 

kb = (kbi^bitf ' ' ' binn = (kd^bitf - - - binn 

= Ci^ykbi^bitf - • • binn — Cix\Ci22\kbizz) • • • binn, 
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and a continuation of this process shows finally that this is equal to he. 
We now turn to the proof of Theorem 1. The matrix A satisfies its 

characteristic equation,3 and hence there is a relation of the form 

(1) A" + a1A«~i+ • • • +an = 0, 

where an— ± | A | , and thus &an = 0. Hence, from (1), we get an equa­
tion of the form 

kAÇA»-1 + aiA»~* + • • • + a*-i) = 0. 

But, by our assumption that A is not a divisor of zero in -R[-4], it 
follows that 

(2) k(A«-i + aiA»-* + • • • + <*n-i) = 0, 

or, as we may write it, 

kA(An~* + atA
n-* + • • • + an_2) = - kan-t. 

Now, applying the lemma, we see that 

k\A\ • | An~ + axA71" + • • • + aw_2) | = k(— l)VLi. 

But k\A\ =0 , and therefore kan-i=0. Suppose kaJ
n_17^0, but kaJ^}1 = 0 

( ièO) . Then k' = kaJ
n_17

é0 has the property that k'an = k'an-i = Q, and 
hence from (2), 

k'A(A"~*+ • • • +a n _ 2 ) = 0. 

A repetition of this argument shows that there is an element kff^0 
of R, which is a multiple of k', such that k"an = k"an-i = k"an-.2 = 0. 
Continuing this process we finally get an element 1^0 of R such that 
lA =0 , which violates our assumption that A is not a divisor of zero 
in R[A ]. The theorem is therefore established. 

Our method of proof also establishes the following 

COROLLARY. If A is a divisor of zero in Rn, there exists an element 
g(A) of R [A ] such that 

Ag(A) = 0, g{A) * 0, 

where g(K) is an element of R [X] with the property that, for some positive 
integer i, 

X*g(X) = kf(\), 

f(K) being the characteristic polynomial of A and k an element of R. 

3 See M, p. 282. 
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3. Resultants and their properties. We first make some preliminary 
remarks.4 Let a be an ideal in the commutative ring R, with unit 
element. An element b of R is said to be prime to a if foc = 0 (a) im­
plies that x^O (a), otherwise b is not prime to a. An element b is 
prime to the element a if & is prime to the principal ideal (a). If every 
element of an ideal b is not prime to a, but every proper divisor of b 
contains an element prime to a, then b is necessarily a prime ideal 
which we shall call a maximal prime ideal belonging to a. Krull has 
shown, by methods which are necessarily transfinite if R is unre­
stricted, that every ideal has maximal prime ideal divisors and that 
the elements of R which are not prime to a are precisely the elements which 
are contained in some maximal prime ideal belonging to5 a. 

We now consider the ring R [X], where X is an indeterminate, and let 

/(X) = \n + aiX-1 + • • • + a», g(\) = b0\
m + b^™-1 + . • . +bm 

be two elements of -R[X], the leading coefficient of /(X) being 1. In 
case R is a field, the vanishing of the resultant of /(X) and gÇK) fur­
nishes a necessary and sufficient condition that /(X) and g(X) be not 
prime to each other.6 We shall now obtain an analogous result in case 
R is unrestricted. 

Let us denote the resultant of /(X) and g(X) by ^ ( / , g) and define 
it in a purely formal way by the Sylvester determinant 

01 • • 
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1 #i 

i i • • 

h bi -

bo bi 

an 1 

bm 

• bm 

bm 

the blank spaces consisting of zeros. 
The connection with the preceding part of the paper is indicated by 

4 Cf. K, p. 732. 
5 In fact, it can be shown that if in R every ideal has a finite basis, the maximal 

prime ideals belonging to a are precisely the maximal among the prime ideals associ­
ated with the primary ideals in a normalized decomposition of a into the intersection 
of primary ideals. All of these prime ideals are the prime ideals belonging to a. 

6 In case R is a field, this implies that f (A) and g(\) have a common factor of de­
gree at least one. 

51(7, g) = 
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THEOREM 2. If A is any element of Rn which has characteristic poly­
nomial j"(X), then 

(3) 4l(/,g)=U04)l-
This is an almost immediate consequence of Frobenius' theorem for 

the case in which R is the field of complex numbers.7 For if we con­
sider the elements of a matrix A, as well as the coefficients of g(X) to 
be independent complex variables, relation (3) is seen to be an iden­
tity in these variables and thus remains true if these variables are re­
placed by elements of8 R. 

Now let A be any fixed element of Rn with characteristic polyno­
mial ƒ (X). The ideal m of all elements hÇk) of R[k] such that h(A) = 0 
is the minimum ideal of A. It is now clear that an element g(K) of 
R [X] is prime to m if and only if g (A) is not a divisor of zero in R [A ], 
and Theorem 1 states that this is the case if and only if |g(i4)| is 
not a divisor of zero in R. We shall now prove 

THEOREM 3. An element g(X) of R\\] is prime to m if and only if 
it is prime to ƒ (X). 

By the preceding remarks, and Theorem 2, we see that g(k) is prime 
to m if and only if <Rj(f, g) is not a divisor of zero in R. But clearly 
^ ( / , g) depends only on/(X) and gÇK) and not on the particular choice 
of matrix A with characteristic polynomial ƒ(X). Let A' be a matrix 
with characteristic polynomial ƒ (X), and such that its minimum ideal 
is9 m' = (jf(X)). Then g(K) is prime to m' if and only if ^ ( / , g) is not a 
divisor of zero in R. But it was found above that this is precisely the 
condition that g(K) be prime to m, and the theorem is established. 

Since g(X) is prime to m if and only if 3^(/, g) is not a divisor of 
zero in R, we have incidentally proved the following result which is 
independent of the theory of matrices : 

THEOREM 4. If R is a commutative ring with unit element and X is 
an indeterminate, an element g(X) of R[h] is prime to the element f (X), 
with leading coefficient unity, if and only if %[f, g) is not a divisor of 
zero in R. 

4. A characterization of matrices which are not derogatory. Let 

7 G. Frobenius, Ueber linear e Substitutionen und bilinear e Forrnen, Journal fiir die 
reine und angewandte Mathematik, vol. 84 (1878), p. 11. 

8 Cf. M, p. 281. 
9 This will certainly be the case if A' is the companion matrix of/(X). See relation 

(4) of §4. 
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A be an element of Rni with characteristic polynomial /(X) and 
minimum ideal m. Following Sylvester, we may say that A is not 
derogatory if m = (/(X)). Let h^Ck) denote the minors of X — A of order 
n — 1. It was remarked above that an element g(\) of R[k] is an 
element of m if and only if 

(4) g(X) A*,-(X) s 0 (/(X)), i, j = 1, 2, • • • , n. 

We shall now make use of this fact in a proof of the following theorem : 

THEOREM 5. If in R each ideal has a finite basis, the matrix A is 
not derogatory if and only if the ideal 

a = (An(X), Ai2(X), • • • , hnn{\)) 

contains an element of R which is not a divisor of zero. 

Suppose b is an element of R which is not a divisor of zero and that 
4 = 0 (a). Then, from (4), it follows that if g(X)sO (m), then bgÇK) = 0 
(/(X)). But/(X) has leading coefficient 1, and from this fact, and the 
fact that b is not a divisor of zero, an easy calculation shows that 
g(X)=0 (/(X)). Since always / (X)=0 (m), this shows that A is non-
derogatory. 

Now let us assume that A is not derogatory which means that 
g(X)a==0 (/(X)) implies that g(X)=0 (/(X)). Under hypothesis of a 
finite basis for each ideal in R, this means that a is not divisible by 
any prime ideal belonging to10 (/(X)). This implies, in turn, that there 
is an element q(K) of a which is not in any prime ideal belonging to 
(/(X)) and is thus prime to11/(X). But since q(\) is prime to/(X), it 
follows by Theorem 4 that ^ ( / , q) = |<zC4)| is not a divisor of zero 
in R. Let | q(A) \ —a. Extend i ? t o a ring R' consisting of elements of 
the form r/al (i = 0, 1, • • • ; r in R).12 In R', a has an inverse and 
therefore q(A) has an inverse13 which is a polynomial in A with co­
efficients in R', say 

p(A) = (bo/a^A* + (bi/a^A*-1 + • • • + (6*/a**). 

Since q(A)p(A) = 1, in R we have a relation of the form 

q(A)(c0A
k + ClA

k~i + • • • + ck) = a1 = b, 
10 Cf. van der Waerden, Moderne Algebra, vol. 2, p. 41. 
11 In fact, it may be shown by induction on k that if every element of an ideal a 

is contained in some one of the prime ideals pi, p2, • • * , p&, then a is divisible by some 
one of the p». 

12 See R. Holzer, Zur Theorie der primàren Ringe, Mathematische Annalen, vol. 
96 (1927), p. 722. 

13 Cf. M, p. 282. 
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where b is not a divisor of zero. If we set 

we have in R[k] 

q(\)t(\) ^b (m), 

which, by hypothesis, implies that 

q(\)t(\) - b (/(X)). 

Now g(X)=0 (a) and clearly also / (X)=0 (a), from which it follows 
that b = 0 (a). The theorem is therefore established. 
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