SPACE CREMONA TRANSFORMATIONS OF ORDER $m+n-1^{1}$

EDWIN J. PURCELL

1. Introduction. This paper discusses a space Cremona transformation of order $m+n-1$ (m, n any integers) generated by two rational twisted curves. One special position of the defining curves gives rise to an involution recently described, ${ }^{2}$ while another special position results in an involution somewhat similar to one which was defined in a different manner by Montesano. ${ }^{3}$
2. Cremona transformation. Consider a curve C_{n} of order n having $n-1$ points on each of two skew lines d and d^{\prime}, and a curve $C_{m}{ }^{\prime}$ of order m having $m-1$ points on each of d and $d^{\prime}(m, n$, any integers). A generic point P determines a ray through it intersecting C_{n} once in α and d once in $\beta . P$ also determines a ray through it intersecting $C_{m}{ }^{\prime}$ once in γ and d once in δ. We define P^{\prime}, the correspondent of P, to be the intersection of lines $\alpha \delta$ and $\beta \gamma$.

It is to be noted that if C_{n} should become identical with $C_{m}{ }^{\prime}$ but d and d^{\prime} remain distinct, there would result the Cremona involution we discussed in a recent paper (loc. cit.).

Let the equations of d be $x_{1}=0, x_{2}=0$, and those of d^{\prime} be $x_{3}=0$, $x_{4}=0$. Let C_{n} be

$$
\begin{array}{ll}
x_{1}=(a s+b t) \prod_{1}^{n-1}\left(t_{i} s-s_{i} t\right), & x_{2}=(c s+d t) \prod_{1}^{n-1}\left(t_{i} s-s_{i} t\right) \\
x_{3}=(e s+f t) \prod_{n}^{2 n-2}\left(t_{i} s-s_{i} t\right), & x_{4}=(g s+h t) \prod_{n}^{2 n-2}\left(t_{i} s-s_{i} t\right)
\end{array}
$$

where s_{i}, t_{i} for $i=1,2, \cdots, n-1$ are values of the parameters of C_{n} for points on d, and for $i=n, n+1, \cdots, 2 n-2$, for points on d^{\prime}.

Let the equations of $C_{m}{ }^{\prime}$ be

$$
\begin{aligned}
& x_{1}=(A S+B T) \prod_{1}^{m-1}\left(T_{i} S-S_{i} T\right), \quad x_{2}=(C S+D T) \prod_{1}^{m-1}\left(T_{i} S-S_{i} T\right), \\
& x_{3}=(E S+F T) \prod_{m}^{2 m-2}\left(T_{i} S-S_{i} T\right), \quad x_{4}=(G S+H T) \prod_{m}^{2 m-2}\left(T_{i} S-S_{i} T\right)
\end{aligned}
$$

[^0]where S_{i}, T_{i} for $i=1,2, \cdots, m-1$ are values of the parameters of $C_{m}{ }^{\prime}$ for points on d, and for $i=m, m+1, \cdots, 2 m-2$, for points on d^{\prime}. Then the equations of the transformation are
\[

$$
\begin{aligned}
& x_{1}^{\prime}=k\left(Q_{1} x_{3}+Q_{2} x_{4}\right)\left(\prod_{1}^{n-1} \theta_{i}\right)\left(\prod_{1}^{m-1} \Phi_{i}\right), \\
& x_{2}^{\prime}=k\left(R_{1} x_{3}+R_{2} x_{4}\right)\left(\prod_{1}^{n-1} \theta_{i}\right)\left(\prod_{1}^{m-1} \Phi_{i}\right), \\
& x_{3}^{\prime}=K^{\prime}\left(r_{2} x_{1}-q_{2} x_{2}\right)\left(\prod_{n}^{2 n-2} \theta_{i}\right)\left(\prod_{m}^{2 m-2} \Phi_{i}\right) \\
& x_{4}^{\prime}=K^{\prime}\left(q_{1} x_{2}-r_{1} x_{1}\right)\left(\prod_{n}^{2 n-2} \theta_{i}\right)\left(\prod_{m}^{2 m-2} \Phi_{i}\right),
\end{aligned}
$$
\]

where $k \equiv(b c-a d), K^{\prime} \equiv(F G-E H)$, and

$$
\begin{array}{rlrl}
Q_{1} & \equiv(A H-B G), & & Q_{2} \equiv(B E-A F) \\
R_{1} & \equiv(C H-D G), & & R_{2} \equiv(D E-C F) \\
q_{1} & \equiv(a h-b g), & & q_{2} \equiv(b e-a f) \\
r_{1} & \equiv(c h-d g), & & r_{2} \equiv(d e-c f) \\
\theta_{i} & \equiv\left\{t_{i}\left(b x_{2}-d x_{1}\right)-s_{i}\left(c x_{1}-a x_{2}\right)\right\} \\
\Phi_{i} & \equiv\left\{T_{i}\left(H x_{3}-F x_{4}\right)-S_{i}\left(E x_{4}-G x_{3}\right)\right\}
\end{array}
$$

The inverse transformation is

$$
\begin{aligned}
& x_{1}=K\left(q_{1} x_{3}^{\prime}+q_{2} x_{4}^{\prime}\right)\left(\prod_{1}^{n-1} \phi_{i}^{\prime}\right)\left(\prod_{1}^{m-1} \Theta_{i}^{\prime}\right) \\
& x_{2}=K\left(r_{1} x_{3}^{\prime}+r_{2} x_{4}^{\prime}\right)\left(\prod_{1}^{n-1} \phi_{i}^{\prime}\right)\left(\prod_{1}^{m-1} \Theta_{i}^{\prime}\right) \\
& x_{3}=k^{\prime}\left(R_{2} x_{1}^{\prime}-Q_{2} x_{2}^{\prime}\right)\left(\prod_{n}^{2 n-2} \phi_{i}^{\prime}\right)\left(\prod_{m}^{2 m-2} \Theta_{i}^{\prime}\right), \\
& x_{4}=k^{\prime}\left(Q_{1} x_{2}^{\prime}-R_{1} x_{1}^{\prime}\right)\left(\prod_{n}^{2 n-2} \phi_{i}^{\prime}\right)\left(\prod_{m}^{2 m-2} \Theta_{i}^{\prime}\right),
\end{aligned}
$$

where $K \equiv(B C-A D), k^{\prime} \equiv(f g-e h)$,

$$
\begin{aligned}
\phi_{i}^{\prime} & \equiv\left\{t_{i}\left(h x_{3}^{\prime}-f x_{4}^{\prime}\right)-s_{i}\left(e x_{4}^{\prime}-g x_{3}^{\prime}\right)\right\} \\
\Theta_{i}^{\prime} & \equiv\left\{T_{i}\left(D x_{1}^{\prime}-B x_{2}^{\prime}\right)-S_{i}\left(A x_{2}^{\prime}-C x_{1}^{\prime}\right)\right\}
\end{aligned}
$$

Both the direct and inverse transformations are of order $m+n-1$, where m and n are any integers.

The fundamental system and its images for the direct transformation are as follows.
d is an $(n-1)$-fold F-line of simple contact. The fixed tangent planes are $\theta_{i}=0$, where $i=1,2, \cdots, n-1$. It is of the first species and its P-surface consists in the planes $\phi_{i}^{\prime}=0$, where $i=1,2, \cdots$, $n-1$, which pass through d^{\prime}.
d^{\prime} is an ($m-1$)-fold F-line of simple contact. The fixed tangent planes are $\Phi_{i}=0$, where $i=m, m+1, \cdots, 2 m-2$. It is of the first species and its P-surface consists in the $m-1$ planes $\Theta_{i}^{\prime}=0$ through d, where $i=m, m+1, \cdots, 2 m-2$.

Each of the $m-1$ intersections of $C_{m}{ }^{\prime}$ and d is an n-fold isolated F-point. Their P-surfaces are $\Theta_{i}^{\prime}=0$, where $i=1,2, \cdots, m-1$, respectively.

Each of the $n-1$ intersections of C_{n} and d^{\prime} is an m-fold isolated F-point. Their P-surfaces are $\phi_{i}^{\prime}=0(i=n, n+1, \cdots, 2 n-2)$ respectively.

The $(n-1)(m-1)$ lines of intersection of the $n-1$ fixed tangent planes through d with the $m-1$ fixed tangent planes through d^{\prime} are simple F-lines without contact. They are of the second species.

The $(m-1)(n-1)$ lines joining the $m-1 n$-fold isolated F-points on d with the $n-1 m$-fold isolated F-points on d^{\prime} are simple F-lines without contact. They are of the second species.

We may obtain a description of the fundamental system of the inverse transformation by interchanging m and n, C_{n} and $C_{m}{ }^{\prime}, \theta_{i}$ and $\Theta_{i}^{\prime}, \Phi_{i}$ and ϕ_{i}^{\prime}, wherever they appear in the foregoing.
C_{n}, d, and d^{\prime} lie on the same quadric surface Q, and $C_{m}{ }^{\prime}, d$, and d^{\prime} lie on a quadric surface Q^{\prime}. These quadrics may be the same or distinct and, while this does not affect the preceding discussion, the invariant systems for the two cases are different.

When Q and Q^{\prime} are distinct, they intersect in d, d^{\prime}, and two transversals l_{1} and l_{2}. The d and d^{\prime} are common generators of the μ-systems of the two quadrics, while l_{1} and l_{2} are common generators of their λ-systems. The transformation sends each λ-generator of Q over into a λ-generator of Q^{\prime}, and each λ-generator of Q^{\prime} over into a λ-generator of Q. Thus Q as a whole corresponds to Q^{\prime} and vice versa. Each λ-generator of either quadric belongs to a cycle of index four-that is, four applications of the transformation leave every λ-generator invariant. The transformation interchanges C_{n} and $C_{m}{ }^{\prime}$. The points of l_{1} are in involution; thus l_{1} is an invariant line and the two fixed points of the involution are invariant points. Similarly for l_{2}. These four invariant points are the only invariant points that are not also F-points.

Let us now consider the case where $C_{n}, C_{m}{ }^{\prime}, d$, and d^{\prime} all lie on the
same quadric $Q \equiv x_{1} x_{4}-x_{2} x_{3}=0$. The transformation causes C_{n} and $C_{m}{ }^{\prime}$ to interchange. The pencil of planes $x_{4}-\lambda x_{3}=0$ is in involution with the pencil $x_{2}-\lambda x_{1}=0$ and this makes each λ-generator of Q invariant. Consequently Q is invariant. The locus of invariant points is a curve K_{m+n} of order $m+n$ lying on $Q . K_{m+n}$ passes through the $m+n-2$ points of intersection of C_{n} and $C_{m}{ }^{\prime}$ and intersects d and d^{\prime} in the $m+n-2$ isolated F-points on each of them. It intersects every μ-generator of Q in $m+n-2$ points and intersects every λ-generator in two points.
3. Involution. Consider a twisted curve C_{n} having $n-1$ points Δ_{i} on a straight line d, and a curve $C_{m}{ }^{\prime}$ having $m-1$ points Σ_{i} on the same straight line d (m, n any integers). A generic point P determines a ray through it intersecting C_{n} in α and d in β, and also a ray through it intersecting $C_{m}{ }^{\prime}$ in γ and d in δ. We define P^{\prime}, the correspondent of P in the involution, to be the intersection of lines $\alpha \delta$ and $\beta \gamma$.

If, in §2, we make d and d^{\prime} identical, we obtain an involution of this kind. However, the curves C_{n} and $C_{m}{ }^{\prime}$ of the present section do not necessarily lie on quadric surfaces.

The involution is of order $m+n-1$.
The fundamental system and its principal images follow.
d is an $(n+m-2)$-fold F-line of simple contact. The fixed tangent planes are $\theta_{i}=0$, where $i=1,2, \cdots, n-1$, and $\Theta_{i}=0$, where $i=1,2, \cdots, m-1$. It is of the second species and counts $(n+m-1)$ $\cdot(n+m-2)$ times in the intersection of any two homaloids.

Points Δ_{i} are isolated F-points. Their P-surfaces are the planes $\theta_{i}=0(i=1,2, \cdots, n-1)$ respectively.

Points Σ_{i} are isolated F-points. The P-element of each is $\Theta_{i}=0$ ($i=1,2, \cdots, m-1$) respectively.

As we have seen, a general point P determines with d a plane π intersecting C_{n} in α and $C_{m}{ }^{\prime}$ in γ. Call L the intersection of lines $\alpha \gamma$ and d. Then J, the harmonic conjugate of L with respect to α and γ, will be the only invariant point of π other than points of d. As π makes one revolution about d, α moves in π and crosses $d n-1$ times; γ also moves in π, crossing $d m-1$ times. As α approaches d, J approaches the same point on d, and the locus of J intersects d in all the points d has in common with C_{n} and $C_{m}{ }^{\prime}$. The locus of J is a rational curve K_{m+n-1} of order $m+n-1$ having $m+n-2$ points on $d . K_{m+n-1}$ is the locus of invariant points.

It is clear that the line $P P^{\prime}$ intersects K_{m+n-1} in J and d in L, and that P and P^{\prime} are harmonic conjugates with respect to ${ }^{4} J$ and L.

[^1]4. Lower order for particular positions of the defining elements. Each of the fixed tangent planes $\theta_{i}=0$ mentioned in the contact conditions for the involution passes through d and is tangent to C_{n} at the corresponding Δ_{i}. The fixed tangent planes $\Theta_{i}=0$ are similarly related to the curve $C_{m}{ }^{\prime}$.

If C_{n} and $C_{m}{ }^{\prime}$ are so situated that a plane of $\theta_{i}=0(i=1,2, \cdots, n-1)$ coincides with a plane of $\Theta_{i}=0(i=1,2, \cdots, m-1)$, the order of the involution is reduced by one. In this way we may reduce the order by any integer up to, and including, the smaller of the two numbers $n-1$ and $m-1$.

University of Arizona

[^0]: ${ }^{1}$ Presented to the Society, September 10, 1940.
 ${ }^{2}$ E. J. Purcell, A multiple null-correspondence and a space Cremona involution of order $2 n-1$, this Bulletin, vol. 46 (1940), pp. 339-444.
 ${ }^{3}$ D. Montesano, Su una classe di trasformazioni involutorie dello spazio, Rendiconti del' Istituto Lombardo di Scienze e Lettere, (2), vol. 21 (1888), pp. 688-690.

[^1]: ${ }^{4}$ Compare with Montesano, loc. cit.

