SPACE CREMONA TRANSFORMATIONS OF ORDER $m+n-1^1$

EDWIN J. PURCELL

1. Introduction. This paper discusses a space Cremona transformation of order m+n-1 (m, n any integers) generated by two rational twisted curves. One special position of the defining curves gives rise to an involution recently described,² while another special position results in an involution somewhat similar to one which was defined in a different manner by Montesano.³

2. Cremona transformation. Consider a curve C_n of order n having n-1 points on each of two skew lines d and d', and a curve C'_m of order m having m-1 points on each of d and d' (m, n, any integers). A generic point P determines a ray through it intersecting C_n once in α and d once in β . P also determines a ray through it intersecting C'_m once in α and d once in δ . We define P', the correspondent of P, to be the intersection of lines $\alpha\delta$ and $\beta\gamma$.

It is to be noted that if C_n should become identical with C_m' but d and d' remain distinct, there would result the Cremona involution we discussed in a recent paper (loc. cit.).

Let the equations of d be $x_1=0$, $x_2=0$, and those of d' be $x_3=0$, $x_4=0$. Let C_n be

$$x_{1} = (as + bt) \prod_{1}^{n-1} (t_{i}s - s_{i}t), \qquad x_{2} = (cs + dt) \prod_{1}^{n-1} (t_{i}s - s_{i}t),$$

$$x_{3} = (es + ft) \prod_{n}^{2n-2} (t_{i}s - s_{i}t), \qquad x_{4} = (gs + ht) \prod_{n}^{2n-2} (t_{i}s - s_{i}t),$$

where s_i , t_i for $i=1, 2, \dots, n-1$ are values of the parameters of C_n for points on d, and for $i=n, n+1, \dots, 2n-2$, for points on d'.

Let the equations of C_m' be

$$x_{1} = (AS + BT) \prod_{1}^{m-1} (T_{i}S - S_{i}T), \quad x_{2} = (CS + DT) \prod_{1}^{m-1} (T_{i}S - S_{i}T),$$

$$x_{3} = (ES + FT) \prod_{m}^{2m-2} (T_{i}S - S_{i}T), \quad x_{4} = (GS + HT) \prod_{m}^{2m-2} (T_{i}S - S_{i}T),$$

¹ Presented to the Society, September 10, 1940.

² E. J. Purcell, A multiple null-correspondence and a space Cremona involution of order 2n-1, this Bulletin, vol. 46 (1940), pp. 339-444.

⁸ D. Montesano, *Su una classe di trasformazioni involutorie dello spazio*, Rendiconti del' Istituto Lombardo di Scienze e Lettere, (2), vol. 21 (1888), pp. 688-690.

where S_i , T_i for $i = 1, 2, \dots, m-1$ are values of the parameters of C''_m for points on d, and for $i = m, m+1, \dots, 2m-2$, for points on d'. Then the equations of the transformation are

$$\begin{aligned} x_1' &= k(Q_1 x_3 + Q_2 x_4) \left(\prod_{1}^{n-1} \theta_i\right) \left(\prod_{1}^{m-1} \Phi_i\right), \\ x_2' &= k(R_1 x_3 + R_2 x_4) \left(\prod_{1}^{n-1} \theta_i\right) \left(\prod_{1}^{m-1} \Phi_i\right), \\ x_3' &= K'(r_2 x_1 - q_2 x_2) \left(\prod_{n}^{2n-2} \theta_i\right) \left(\prod_{m}^{2m-2} \Phi_i\right), \\ x_4' &= K'(q_1 x_2 - r_1 x_1) \left(\prod_{n}^{2n-2} \theta_i\right) \left(\prod_{m}^{2m-2} \Phi_i\right), \end{aligned}$$

where $k \equiv (bc - ad)$, $K' \equiv (FG - EH)$, and

$$Q_{1} \equiv (AH - BG), \qquad Q_{2} \equiv (BE - AF), \\ R_{1} \equiv (CH - DG), \qquad R_{2} \equiv (DE - CF), \\ q_{1} \equiv (ah - bg), \qquad q_{2} \equiv (be - af), \\ r_{1} \equiv (ch - dg), \qquad r_{2} \equiv (de - cf), \\ \theta_{i} \equiv \{t_{i}(bx_{2} - dx_{1}) - s_{i}(cx_{1} - ax_{2})\}, \\ \Phi_{i} \equiv \{T_{i}(Hx_{3} - Fx_{4}) - S_{i}(Ex_{4} - Gx_{3})\}.$$

The inverse transformation is

$$\begin{aligned} x_{1} &= K(q_{1}x'_{3} + q_{2}x'_{4}) \left(\prod_{1}^{n-1} \phi'_{i}\right) \left(\prod_{1}^{m-1} \Theta'_{i}\right), \\ x_{2} &= K(r_{1}x'_{3} + r_{2}x'_{4}) \left(\prod_{1}^{n-1} \phi'_{i}\right) \left(\prod_{1}^{m-1} \Theta'_{i}\right), \\ x_{3} &= k'(R_{2}x'_{1} - Q_{2}x'_{2}) \left(\prod_{n}^{2n-2} \phi'_{i}\right) \left(\prod_{m}^{2m-2} \Theta'_{i}\right), \\ x_{4} &= k'(Q_{1}x'_{2} - R_{1}x'_{1}) \left(\prod_{n}^{2n-2} \phi'_{i}\right) \left(\prod_{m}^{2m-2} \Theta'_{i}\right), \end{aligned}$$

where $K \equiv (BC - AD)$, $k' \equiv (fg - eh)$,

$$\phi'_{i} \equiv \left\{ t_{i}(hx'_{3} - fx'_{4}) - s_{i}(ex'_{4} - gx'_{3}) \right\},\\ \Theta'_{i} \equiv \left\{ T_{i}(Dx'_{1} - Bx'_{2}) - S_{i}(Ax'_{2} - Cx'_{1}) \right\}$$

Both the direct and inverse transformations are of order m+n-1, where m and n are any integers.

The fundamental system and its images for the direct transformation are as follows.

d is an (n-1)-fold F-line of simple contact. The fixed tangent planes are $\theta_i = 0$, where $i = 1, 2, \dots, n-1$. It is of the first species and its P-surface consists in the planes $\phi'_i = 0$, where $i = 1, 2, \dots, n-1$, which pass through d'.

d' is an (m-1)-fold F-line of simple contact. The fixed tangent planes are $\Phi_i = 0$, where $i = m, m+1, \dots, 2m-2$. It is of the first species and its P-surface consists in the m-1 planes $\Theta'_i = 0$ through d, where $i = m, m+1, \dots, 2m-2$.

Each of the m-1 intersections of C'_m and d is an *n*-fold isolated *F*-point. Their *P*-surfaces are $\Theta'_i = 0$, where $i = 1, 2, \dots, m-1$, respectively.

Each of the n-1 intersections of C_n and d' is an *m*-fold isolated *F*-point. Their *P*-surfaces are $\phi'_i = 0$ $(i = n, n+1, \dots, 2n-2)$ respectively.

The (n-1)(m-1) lines of intersection of the n-1 fixed tangent planes through d with the m-1 fixed tangent planes through d' are simple *F*-lines without contact. They are of the second species.

The (m-1)(n-1) lines joining the m-1 *n*-fold isolated *F*-points on *d* with the n-1 *m*-fold isolated *F*-points on *d'* are simple *F*-lines without contact. They are of the second species.

We may obtain a description of the fundamental system of the inverse transformation by interchanging m and n, C_n and C'_m , θ_i and Θ'_i , Φ_i and ϕ'_i , wherever they appear in the foregoing.

 C_n , d, and d' lie on the same quadric surface Q, and C_m' , d, and d' lie on a quadric surface Q'. These quadrics may be the same or distinct and, while this does not affect the preceding discussion, the invariant systems for the two cases are different.

When Q and Q' are distinct, they intersect in d, d', and two transversals l_1 and l_2 . The d and d' are common generators of the μ -systems of the two quadrics, while l_1 and l_2 are common generators of their λ -systems. The transformation sends each λ -generator of Q over into a λ -generator of Q', and each λ -generator of Q' over into a λ -generator of Q. Thus Q as a whole corresponds to Q' and vice versa. Each λ -generator of either quadric belongs to a cycle of index four—that is, four applications of the transformation leave every λ -generator invariant. The transformation interchanges C_n and C_m' . The points of l_1 are in involution; thus l_1 is an invariant line and the two fixed points of the involution are invariant points. Similarly for l_2 . These four invariant points are the only invariant points that are not also F-points.

Let us now consider the case where C_n , C_m' , d, and d' all lie on the

244

1941]

same quadric $Q \equiv x_1 x_4 - x_2 x_3 = 0$. The transformation causes C_n and C''_m to interchange. The pencil of planes $x_4 - \lambda x_3 = 0$ is in involution with the pencil $x_2 - \lambda x_1 = 0$ and this makes each λ -generator of Q invariant. Consequently Q is invariant. The locus of invariant points is a curve K_{m+n} of order m+n lying on Q. K_{m+n} passes through the m+n-2 points of intersection of C_n and C''_m and intersects d and d' in the m+n-2 isolated F-points on each of them. It intersects every μ -generator of Q in m+n-2 points and intersects every λ -generator in two points.

3. Involution. Consider a twisted curve C_n having n-1 points Δ_i on a straight line d, and a curve C'_m having m-1 points Σ_i on the same straight line d (m, n any integers). A generic point P determines a ray through it intersecting C_n in α and d in β , and also a ray through it intersecting C'_m in γ and d in δ . We define P', the correspondent of Pin the involution, to be the intersection of lines $\alpha\delta$ and $\beta\gamma$.

If, in §2, we make d and d' identical, we obtain an involution of this kind. However, the curves C_n and C'_m of the present section do not necessarily lie on quadric surfaces.

The involution is of order m+n-1.

The fundamental system and its principal images follow.

d is an (n+m-2)-fold F-line of simple contact. The fixed tangent planes are $\theta_i = 0$, where $i = 1, 2, \dots, n-1$, and $\Theta_i = 0$, where $i = 1, 2, \dots, m-1$. It is of the second species and counts (n+m-1)(n+m-2) times in the intersection of any two homaloids.

Points Δ_i are isolated *F*-points. Their *P*-surfaces are the planes $\theta_i = 0$ $(i = 1, 2, \dots, n-1)$ respectively.

Points Σ_i are isolated *F*-points. The *P*-element of each is $\Theta_i = 0$ $(i=1, 2, \dots, m-1)$ respectively.

As we have seen, a general point P determines with d a plane π intersecting C_n in α and C''_m in γ . Call L the intersection of lines $\alpha\gamma$ and d. Then J, the harmonic conjugate of L with respect to α and γ , will be the only invariant point of π other than points of d. As π makes one revolution about d, α moves in π and crosses d n-1 times; γ also moves in π , crossing d m-1 times. As α approaches d, J approaches the same point on d, and the locus of J intersects d in all the points d has in common with C_n and C'_m . The locus of J is a rational curve K_{m+n-1} of order m+n-1 having m+n-2 points on d. K_{m+n-1} is the locus of invariant points.

It is clear that the line PP' intersects K_{m+n-1} in J and d in L, and that P and P' are harmonic conjugates with respect to⁴ J and L.

⁴ Compare with Montesano, loc. cit.

4. Lower order for particular positions of the defining elements. Each of the fixed tangent planes $\theta_i = 0$ mentioned in the contact conditions for the involution passes through d and is tangent to C_n at the corresponding Δ_i . The fixed tangent planes $\Theta_i = 0$ are similarly related to the curve C'_m .

If C_n and C'_m are so situated that a plane of $\theta_i = 0$ $(i = 1, 2, \dots, n-1)$ coincides with a plane of $\Theta_i = 0$ $(i = 1, 2, \dots, m-1)$, the order of the involution is reduced by one. In this way we may reduce the order by any integer up to, and including, the smaller of the two numbers n-1 and m-1.

University of Arizona

246