A NOTE ON A THEOREM BY WITT¹

ROBERT M. THRALL

1. Introduction. Let F denote the free group with n generators and let F^c be the cth member of the lower central series² of F. Witt³ has shown that $Q^c = F^c/F^{c+1}$ is a free abelian group with $\psi_c(n)$ $= (1/c) \sum \mu(c/d) n^d$ generators (the summation is over all divisors d of c and μ is the Möbius μ -function).

The set of kth powers in F generates a normal subgroup H_k . Let $F_k = F/H_k$ and $G_{k,c} = F_k/F_k^{c+1}$. We shall call F_k the free k-group and $G_{k,c}$ the free k-group of class c. It is a consequence of Witt's result that F_k^c/F_k^{c+1} , the central of $G_{k,c}$, is abelian and has at most $\psi_c(n)$ generators. In this note we show that if p is a prime greater than c, and $q = p^{\alpha}$, then the central of $G_{q,c}$ is of order q^N where $N = \psi_c(n)$. If the prime divisors of k are all greater than c, an analogous result holds for the central of $G_{k,c}$ as a consequence of Burnside's theorem that a nilpotent group is the direct product of its Sylow subgroups.

Let M_c denote the space of tensors of rank c over the GF[p]. A homomorphic mapping of M_c upon the central of $G_{p,c}$ is set up and enables one to apply the theory of decompositions of tensor space under the full linear group mod p, to determine all characteristic subgroups of $G_{p,c}$ which lie in its central. This theory is applied to determine all the characteristic subgroups of $G_{p,c}$ for c < 5 and a multiplication table is constructed for $G_{p,3}$.

2. Commutator calculus.⁴ Let s_1, s_2, \cdots be operators in any group G and set $s_{12} = (s_1, s_2) = s_1^{-1} s_2^{-1} s_1 s_2$ and $s_{12} \ldots_k = (s_{12} \ldots_{k-1}, s_k)$. $s_{12} \ldots_k$ is called a *simple commutator* of *weight* k in the components s_1, \cdots, s_k . The group G^k generated by the simple commutators of weight k for all choices of s_1, \cdots, s_k in G is called the kth member of the *lower central series* of G. If $s \in G^k$ but $s \notin G^{k+1}$, then s is said to have weight k in G.

For all s_1 , s_2 , s_3 in G we have

(1) $(s_1s_2, s_3) = s_{13}s_{132}s_{23}, (s_1, s_2s_3) = s_{13}s_{12}s_{123}.$

Let the weight of s_i be α_i and set $\alpha = \alpha_1 + \cdots + \alpha_k + 1$. The following relations are then true:

¹ Presented to the Society, April 13, 1940.

² For definition see §2 below or [4, p. 49].

³ [7, p. 153].

⁴ The relations in this section are either taken directly from Hall, Magnus, or Witt or are immediate consequences of their theorems. See [4, 6 and 7].

R. M. THRALL

(2)
$$s_{123...k}s_{213...k} \equiv I \mod G^{\alpha},$$

$$(3) \qquad \qquad s_{123}\ldots_k s_{231}\ldots_k s_{312}\ldots_k \equiv I \mod G^{\alpha},$$

(4)
$$(s_1^{a_1}, s_2^{a_2}, \cdots, s_k^{a_k}) \equiv (s_{12} \cdots s_k)^{a_1 a_2 \cdots a_k} \mod G^{\alpha}.$$

If now $\alpha - 1 = km$, $m = \min(\alpha_1, \dots, \alpha_k)$ and $\rho_{\beta} = \prod_{\delta=1}^{\delta=n} s_{\delta}^{\alpha_{\beta\delta}}$, $\beta = 1, \dots, k$, it follows that

(5)
$$\rho_{12\cdots k} \equiv \prod_{\beta_{\nu}=1}^{n} (s_{\beta_{1}\cdots\beta_{k}})^{a_{1}}\beta_{1}\cdots a_{k}\beta_{k} \mod G^{\alpha}.$$

3. The groups F_q . Let F be the free group generated by s_1, \dots, s_n , and denote by \overline{H}_k the smallest normal subgroup containing the kth powers of all simple commutators of s_1, \dots, s_n .

LEMMA I. Let $q = p^{\alpha}$, p any prime. Then $s^{q} \in \overline{H}_{q} \cup F^{p}$ for any element $s \in F$.

PROOF BY INDUCTION. The lemma is trivial for s of weight greater than p-1. Suppose the lemma true for all weight greater than c and let s be of weight c. By the definition of weight, s can be written in the form $s = t_1 \cdots t_m v_0$ where v_0 has weight greater than c and the t_i are of weight c and are all simple commutators in s_1, \cdots, s_n . Then by the fundamental expansion formula⁵ for $(PQ \cdots)^x$ we have

$$s^{q} = t_{1}^{q} \cdots t_{m}^{q} v_{0}^{q} v_{1}^{q} \cdots v_{j}^{q} w$$

where $w \in F^p$ and the v_β are all of weight greater than c. By definition $t^q_\beta \in \overline{H}_q$ and by our induction hypothesis $v^q_\beta \in \overline{H}_q \cup F^p$ and so $s^q \in \overline{H}_q \cup F^p$.

COROLLARY I. Let s have weight c, for c < p. Then $s^q \in \overline{H}_q \cup F^{c+1}$.

Set $H_{q,c} = H_q \cap F^c$ and $\overline{H}_{q,c} = \overline{H}_q \cap F^c$. Then we have

COROLLARY II. For c < p, $H_{q,c} \cup F^{c+1} = \overline{H}_{q,c} \cup F^{c+1}$.

LEMMA II. $F_q^c/F_q^{c+1} \simeq F^c/(F^{c+1} \cup H_{q,c})$.

We note first that applying the second homomorphism theorem⁶ to Hall's formula⁷ $F_q^c = (F^c \cup H_q)/H_q$ we obtain the result $F_q^c = F^c/H_{q,c}$ (for all c). Now

304

⁵ See [4, formula 3.51] or [6, p. 111].

⁶ See [2, p. 32].

⁷ See [4, formula 2.491] or [2, p. 119].

A THEOREM BY WITT

$$F^{c}/(F^{c+1} \cup H_{q,c}) \simeq (F^{c}/H_{q,c})/([F^{c+1} \cup H_{q,c}]/H_{q,c})$$
$$\simeq F^{c}_{q}/(F^{c+1}/[H_{q,c} \cap F^{c+1}]) = F^{c}_{q}/F^{c+1}_{q,c},$$

since $H_{q,c} \cap F^{c+1} = H_{q,c+1}$. Set $Q_q^c = F_q^c / F_q^{c+1}$.

THEOREM I. For c < p, Q_q^e is abelian of order q^N , $N = \psi_c(n)$.

DEFINITION. t_1, \dots, t_k is said to be a basis for $F^c \mod F^{c+1}$, if any operator t of weight c can be written uniquely in the form $t = \prod t_i^{a_i} \theta$ where $\theta \in F^{c+1}$.

Evidently such a basis exists, and by Witt's theorem⁸ k = N; and we may choose the t_i as simple commutators in the generators s_1, \dots, s_n . Let ρ_i be the image in Q_q^e of t_i . Then since the t_i are a basis for $F^e \mod F^{e+1}$, any operator $\rho \in Q$ can be written in the form $\rho = \prod \rho_t^{d_i}$ where $0 \le d_i < q$. Hence the order of Q_q^e is at most q^N for any c. If the order of Q_q^e is less than q^N there exists a relation $\prod \rho_t^{d_i} = I$ where, say, $d_j \ne 0$.

If now p > c, this relation together with Corollary II and Lemma II imply that $\prod t_i^{d_i} \in \overline{H}_{q,c} \cup F^{c+1}$, or $\prod t_i^{d_i} \equiv \prod t_i^{q_{e_i}} \mod F^{c+1}$. Since the t_i are a basis for $F^c \mod F^{c+1}$ this requires $d_i - qe_i = 0$, $i = 1, \dots, N$, which contradicts the assumption that d_i and, therefore, $d_j - qe_i$ is not divisible by q. Hence there can be no relation between the ρ_i and the theorem is proved.

COROLLARY III. For
$$p > c$$
, $G_{q, c}^{j}$ is of order q^{m} ,
 $m = \psi_{j}(n) + \cdots + \psi_{c}(n), \qquad j = 1, \cdots, c.$

4. Characteristic subgroups of $G = G_{p,c}$. A large variety of characteristic subgroups of G can be obtained from the lower central series by sequences of joins, intersections, and commutations. In G the upper and lower central series are identical; in particular, the central C $(= C_{p,c})$ of G is G^p . The central quotient group of G is $G_{p,c-1}$, and any characteristic subgroup H of G is mapped into a characteristic subgroup $H' = H \cup C/C$ in $G_{p,c-1}$.

We say that K is a minimal characteristic subgroup (m.c.s.) of G if no proper subgroup of K is characteristic in G. For $G = G_{p,c}$, every m.c.s. lies in the central. Indeed any normal subgroup of G must contain commutators of weight c and therefore must have an intersection not equal to I with C. We turn now to the determination of all characteristic subgroups of G which lie in C.

1941]

305

⁸ See [7, Theorems 3 and 4, pp. 152–153].

R. M. THRALL

Let \overline{A} be any automorphism of G, and H any characteristic subgroup of G. \overline{A} induces an automorphism $\overline{A}(H)$ on G/H and an automorphism $\overline{A}[H]$ on H. If in particular H is G^2 , the commutator subgroup of G, then G/H is the abelian group of order p^n and type 1, 1, 1, \cdots . Let the generators of G be s_i, \cdots, s_n , and let t_i be the image in G/G^2 of s_i . Then $\overline{A}(H)$ takes the form $t_i \rightarrow t_i'$ where

$$t'_i = \prod t_i^{aij}, a_{ij} \in GF[p], \qquad |a_{ij}| \neq 0.$$

Hence \overline{A} itself must be of the form $s_i \rightarrow s'_i$ where

$$s_i' = \prod s_j^{a_{ij}} r_i, \qquad r_i \in G^2.$$

To calculate $\overline{A}[C]$ we apply (5) with k = c. Since $G^{c+1} = I$, (5) is now an equality and shows that $\overline{A}[C]$ is independent of the r_i . Indeed if we set $A = (a_{ij})$ we see that the formal commutators $s_{i_1 \dots i_c}$ transform like tensors of rank c, that is, according to $A \times A \times \dots \times A$ (Kronecker direct product with c factors).

Denote by M_c the whole space of tensors of rank c. It has dimension n^c . The group $A_c = \{A \times A \times \cdots \times A\}$ (c factors) is homomorphic to the group $\{A\}$ of linear transformations, and hence M_c is a representation space for $\{A\}$. Brauer⁹ has proved the following theorem concerning the decompositions of this representation:

THEOREM II. If K is a field of characteristic $p \neq 0$, the representation A_c is completely reducible for c < p, and it splits into irreducible parts in exactly the same way as in the case of characteristic zero.

The mapping $x_{i_1 \cdots i_c} \rightarrow s_{i_1 \cdots i_c}$ (where of course products in C are replaced by sums in M_c) establishes a homomorphic mapping of M_c upon C and this mapping is preserved under the group A_c , that is, C is also a representation space for the group A_c . Let \overline{C} denote Cwritten additively. Then $\overline{C} = M_c - W_c$, where W_c contains all tensors whose image in C is identity. We call W_c the space of commutator relations, W_c is evidently an invariant subspace of M_c under the tensor group and by Theorem I it has dimension $n^c - \psi_c(n)$ if p > c. Because of the complete reducibility of the representation A_c we can write $M_c = W_c + P_c$ where P_c is likewise an invariant subspace of M_c , and furthermore the decomposition into irreducibly invariant subspaces of P_c under A_c will be the same as that of C under the group of automorphisms of G. (P_c is not uniquely determined by W_c but its decompositions are.) Let R_1, \cdots, R_t be irreducibly invariant sub-

[April

⁹ See [3, p. 867].

spaces of M_c whose direct sum is P_c , and let T_1, \dots, T_t be the corresponding subgroups of C. Then the following theorem expresses the above arguments in group theoretic terms:

THEOREM III. Any minimal characteristic subgroup is isomorphic to one of T_1, \dots, T_t and any characteristic subgroup K of G which lies in the central is the direct product of the minimal characteristic subgroups which it contains. (p > c is assumed throughout.)

The number of characteristic subgroups in G is clearly independent of the number n of generators provided that $n \ge c$. Hence to obtain all characteristic subgroups of the set of groups $G_{p,c}$ with p > c we need only consider those with n = c.

5. The groups $G_{p,3}$ and $G_{p,4}$. In this section we shall make use of the decomposition into irreducibly invariant subspaces of the tensor spaces M_3 and M_4 . These can be readily obtained by a direct computation based upon the decomposition theorems of M_c in general.¹⁰ We suppose n=3 in M_3 and n=4 in M_4 .

 $M_3 = \sum_1 + \sum_{2,1} + \sum_{2,2} + \sum_3$ in which the summands have dimensions 10, 8, 8 and 1 respectively. $W_3 = \sum_1 + \sum_{2,1} + \sum_3$ and hence $G_{p,3}$ has just one m.c.s., its central.

$$M_{4} = \sum_{1} + \sum_{2,1} + \sum_{2,2} + \sum_{2,3} + \sum_{3,1} + \sum_{3,2} + \sum_{4,1} + \sum_{4,2} + \sum_{4,3} + \sum_{5}$$

in which the summands have dimensions 35, 45, 45, 45, 20, 20, 15, 15, 15, and 1 respectively. $W_4 = \sum_1 + \sum_{2,1} + \sum_{2,2} + \sum_{3,1} + \sum_{3,2} + \sum_{4,1} + \sum_{4,2} + \sum_{5}$ and hence $G_{p,4}$ has two m.c.s., one of which is its second derived group. Let us denote these by D and E.

 $G_{p,1}$ has no proper characteristic subgroups and the only proper characteristic subgroup of $G_{p,2}$ is its central $G_{p,2}^2$.

THEOREM IV. The only characteristic subgroups of $G_{p,3}$ are the members of its lower central series.

Let *H* be characteristic in $G_{p,3}$. Then if $H \neq I$ or *C*, by Theorem III $H \supset C$. H' = H/C must then be $G_{p,2}$ or its central. In the first case $H = G_{p,3}$ and in the second case $H = G_{p,3}^2$.

THEOREM V. The only characteristic subgroups of $G_{p,4}$ are D, E and the members of the lower central series.

It is easy to see that if a characteristic subgroup $H \supset C$ then H is in

1941]

¹⁰ See for instance [1, Theorem 4.4D, p. 129].

the lower central series. To complete the proof we show then that if $H \oplus C$, H = D or E. Since $H \oplus C$, either H' = I; in which case $H \subset C$ and therefore H = D or E; or $H' \supset G_{p,3}^3$ (by Theorem IV). It remains now only to show that $H' \supset G_{p,3}^3$ implies $H \supset C$. If now $H' \supset G_{p,3}^3$, then $H \cup C \supset G_{p,4}^3$ and hence for the commutator s_{123} of weight 3 we have a factorization $s_{123} = hd$ where $h \in H$ and $d \in C$ (and so d has weight not less than 4). Since H is normal $(h, s_4) = (s_{123} \cdot d^{-1}, s_4) = s_{1234} \in H$. But the conjugates of s_{1234} generate C so that $H \supset C$ contrary to hypothesis, and the theorem is proved.

For the sake of completeness we give a multiplication table for $G_{p,3}$. Applying the formulas of §2 and Theorem I we have for any operator s of $G_{p,3}$ a unique expression in the form

$$s = s^{A} = \prod s_{i}^{a_{i}} \prod_{i < j} s_{ij}^{a_{ij}} \prod_{i \neq j} s_{ijj}^{a_{ijj}} \prod_{i < j < k} s_{ijk}^{a_{ijk}} s_{jki}^{a_{jki}}.$$

If now $s^{C} = s^{A}s^{B}$, then applying the readily verified formula $(s_{1}^{\alpha}, s_{2}^{\beta}) = s_{12}^{\alpha\beta} s_{121}^{\beta C\alpha,2} s_{122}^{\alpha C\beta,2}$ we obtain¹¹ (i < j < k)

$$c_{i} = a_{i} + b_{i}, \qquad c_{ij} = a_{ij} + b_{ij} - b_{i}a_{j},$$

$$c_{ijj} = a_{ijj} + b_{ijj} - b_{i}C_{aj,2} + b_{j}a_{ij} - b_{i}b_{j}a_{j},$$

$$c_{iii} = a_{iii} + b_{iii} + a_{i}C_{bi,2} - b_{i}a_{ij},$$

(6)
$$c_{jii} = a_{jii} + b_{jii} + a_j C_{b_j,2} - b_i a_{ij},$$

 $c_{ijk} = a_{ijk} + b_{ijk} + b_j a_{ik} + b_k a_{ij} - b_i a_j a_k - b_i b_j a_k - b_i b_k a_j,$
 $c_{jki} = a_{jki} + b_{jki} + b_i a_{jk} + b_j a_{ik} - b_i b_j a_k.$

BIBLIOGRAPHY

1. H. Weyl, The Classical Groups, Princeton University Press, 1939.

2. H. Zassenhaus, Lehrbuch der Gruppentheorie, Hamburger Mathematische Einzelschriften, vol. 21, 1937.

3. R. Brauer, Algebras connected with semi-simple groups, Annals of Mathematics, vol. 38 (1937), pp. 857-872.

4. P. Hall, Groups of prime power order, Proceedings of the London Mathematical Society, vol. 36 (1934), pp. 29–95.

5. Levi and van der Waerden, Über eine besondere Klasse von Gruppen, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, vol. 9 (1933), pp. 154–158.

6. W. Magnus, Über Beziehungen zwischen höheren Kommutatoren, Journal für die reine und angewandte Mathematik, vol. 177 (1937), pp. 105-115.

7. E. Witt, Treue Darstellung Liescher Ringe, Journal für die reine und angewandte Mathematik, vol. 177 (1937), pp. 152-160.

UNIVERSITY OF MICHIGAN

¹¹ For p=3, $s_{ijj}=s_{jii}=I$ and $s_{ijk}=s_{jki}$ so that (6) reduces to formula 9 of Levi and van der Waerden [5, p. 156].