The corresponding expression for what I call the type A deriva-tive-based on another, but equally logical definition-is merely the first term of the above expression.

Columbia University

ON THE ASYMPTOTIC LINES OF A RULED SURFACE

GUIDO FUBINI

Many mathematicians have studied the surfaces every asymptotic curve of which belongs to a linear complex. I will here be content with the results given on pages 112-116 and 266-288 of a treatise ${ }^{1}$ written by myself and Professor A. Cech. This treatise gives (p.113) a very simple proof of the following theorem:

If every non-rectilinear asymptotic curve of a ruled surface S belongs to a linear complex, all these asymptotic curves are projective to each other.

We will find all the ruled surfaces, the non-rectilinear asymptotic curves of which are projective to each other, and prove conversely that every one of these asymptotic curves belongs to a linear complex. If c, c^{\prime} are two of these asymptotic curves and if A is an arbitrary point of c, we can find on c^{\prime} a point A^{\prime} such that the straight line $A A^{\prime}$ is a straight generatrix of S. The projectivity, which, according to our hypothesis, transforms c into c^{\prime}, will carry A into a point A_{1} of c^{\prime}. We will prove that the two points A^{\prime} and A_{1} are identical; but this theorem is not obvious and therefore our demonstration cannot be very simple. The generalization to nonruled surfaces seems to be rather complicated: and we do not occupy ourselves here with such a generalization.

If the point $x=x(u, v)$ generates a ruled surface S, for which $u=$ const. and $v=$ const. are asymptotic curves, we can suppose (loc. cit., p. 182)

$$
\begin{equation*}
x=y+u z \tag{1}
\end{equation*}
$$

in which y and z are functions of v. More clearly, if $x_{1}, x_{2}, x_{3}, x_{4}$ are homogeneous projective coordinates of a point of S, we can find eight functions y_{i} and z_{i} of v such that

$$
\begin{equation*}
x_{i}=y_{i}(v)+u z_{i}(v), \quad i=1,2,3,4 \tag{bis}
\end{equation*}
$$

From the general theory of surfaces, it is known (loc. cit., p. 90) that

[^0]we can find five functions $\theta, \beta, \gamma, p_{11}, p_{22}$ of u, v such that
\[

$$
\begin{align*}
&\left\{\begin{aligned}
x_{u u} & =\theta_{u} x_{u}+\beta x_{v}+p_{11} x, \\
x_{v v} & =\gamma x_{u}+\theta_{v} x_{v}+p_{22} x,
\end{aligned}\right. \tag{2}\\
& x_{u}=\frac{\partial x}{\partial u}, \quad \theta_{u}=\frac{\partial \theta}{\partial u}, \quad x_{u u}=\frac{\partial^{2} x}{\partial u^{2}}, \cdots ; \\
& x=x_{i} ; \quad i=1,2,3,4 ; \quad x=y+u z
\end{align*}
$$
\]

Since now $x_{u u}=0$, the former of these equations becomes

$$
0=\theta_{u} x_{u}+\beta x_{v}+p_{11} x
$$

and therefore (since the points x, x_{u}, x_{v} are independents):

$$
\theta_{u}=\beta=p_{11}=0 .
$$

Equation (2) becomes

$$
y_{v v}+u z_{v v}=\gamma z+\theta_{v}\left(y_{v}+u z_{v}\right)+p_{22}(y+u z) .
$$

And, by differentiating two times with respect to u,

$$
0=\frac{\partial^{2} p_{22}}{\partial u^{2}} y+\frac{\partial^{2}\left(\gamma+u p_{22}\right)}{\partial u^{2}} z .
$$

Therefore

$$
0=\frac{\partial^{2} p_{22}}{\partial u^{2}}=\frac{\partial^{2}}{\partial u^{2}}\left(\gamma+u p_{22}\right)
$$

and we can write

$$
\begin{align*}
p_{22} & =A+B u, \quad \gamma+u p_{22}=C+D u, \tag{3}\\
\gamma & =(C+D u)-\mu(A+B u), \tag{4}
\end{align*}
$$

in which A, B, C, D are functions only of v. We can multiply the x_{i} or, what is the same, the y_{i} and the z_{i} by a factor of proportionality (function only of v) such that $\theta=$ const., and $\theta_{v}=0$ (or that the determinant of the $y_{i}, z_{i}, y_{i}^{\prime}=\partial y_{i} / \partial v, z_{i}^{\prime}=\partial z_{i} / \partial v$ becomes a constant). The second equation of (2) becomes

$$
x_{v v}=\gamma z+p x, \quad p=p_{22}=A+B u
$$

and, by differentiating with respect to u,

$$
z_{v v}=D z+B y=(D-u B) z+B x .
$$

Therefore

$$
\begin{gathered}
\gamma z=x_{v v}-p x, \quad p=A+B u=p_{22} \\
\frac{\partial^{2}}{\partial v^{2}} \frac{x_{v v}-p x}{\gamma}-(D-u B) \frac{x_{v v}-p x}{\gamma}-B x=0
\end{gathered}
$$

or

$$
\begin{gathered}
x^{\prime \prime \prime \prime}-2 \frac{\gamma^{\prime}}{\gamma} x^{\prime \prime \prime}+\left[2\left(\frac{\gamma^{\prime}}{\gamma}\right)^{2}-\frac{\gamma^{\prime \prime}}{\gamma}-A-D\right] x^{\prime \prime}+2 \frac{p q^{\prime}-p^{\prime} q}{\gamma} x^{\prime} \\
\quad+\left[2 \frac{\gamma^{\prime}}{\gamma} \frac{p^{\prime} q-p q^{\prime}}{\gamma}+\frac{p q^{\prime \prime}-p^{\prime \prime} q}{\gamma}+A D-B C\right] x=0, \\
p=A+B u, \quad q=C+D u, \quad \gamma=q-u p, \\
p^{\prime}=\frac{\partial p}{\partial v}, \quad \gamma^{\prime}=\frac{\partial \gamma}{\partial v}, \quad x^{\prime}=\frac{\partial x}{\partial v}, \cdots .
\end{gathered}
$$

This is the differential equation which defines the asymptotic curves $u=$ const. If we put $x=X \gamma^{1 / 2}$, this equation becomes

$$
X^{\prime \prime \prime \prime}+l X^{\prime \prime}+m X^{\prime}+n X=0
$$

in which

$$
\begin{aligned}
& l=2 \frac{\gamma^{\prime \prime}}{\gamma}-\frac{5}{2}\left(\frac{\gamma^{\prime}}{\gamma}\right)^{2}-(A+D), \quad n=-\frac{35}{16}\left(\frac{\gamma^{\prime}}{\gamma}\right)^{4}+\frac{r}{\gamma^{3}}, \\
& m=2 \frac{\gamma^{\prime \prime \prime}}{\gamma}-7 \frac{\gamma^{\prime} \gamma^{\prime \prime}}{\gamma^{2}}+5\left(\frac{\gamma^{\prime}}{\gamma}\right)^{3}+2 \frac{p q^{\prime}-q p^{\prime}}{\gamma}-(A+D) \frac{\gamma^{\prime}}{\gamma}
\end{aligned}
$$

(r is a polynomial of the variable u). The projective invariants (or covariants) of the curve defined by this equation are
$U d v^{3}, \quad V_{1} d v^{2}, \quad W d v^{4}$.
We have put

$$
\begin{aligned}
& \begin{array}{l}
U=l^{\prime}-m=\frac{\epsilon}{\gamma}, \quad\left[\epsilon=\left\{\left(A^{\prime}-D^{\prime}\right) C-(A-D) C^{\prime}\right\}\right. \\
\\
\left.\quad+2\left(C B^{\prime}-B C^{\prime}\right) u+\left\{\left(A^{\prime}-D^{\prime}\right) B-B^{\prime}(A-D)\right\} u^{2}\right] \\
W=20 l^{\prime \prime}-50 m^{\prime}-9 l^{2}+100 n=k\left(\frac{\gamma^{s}}{\gamma}\right)^{4}+\frac{R}{\gamma^{3}}
\end{array}, l
\end{aligned}
$$

$$
k=\text { const. }=175 \neq 0 ; R \text { a polynomial of } u
$$

and (if $U \neq 0$)

$$
V_{1}=6[\log U]^{\prime \prime}-\left(\frac{U^{\prime}}{U}\right)^{2}-\frac{36}{5} l, \quad U^{\prime}=\frac{\partial U}{\partial v}
$$

If $U=0$, the curve belongs to a linear complex ; if $U \neq 0$,

$$
\frac{W^{3}}{U^{4}}=\frac{\left(k \gamma^{\prime 4}+R \gamma\right)^{3}}{\gamma^{8} \epsilon^{4}}
$$

is a projective invariant. If all the asymptotic curves $u=$ const. are projective to each other, this ratio must not be dependent upon u. And therefore the values of u, for which $\gamma=0$, must also satisfy the equation $\gamma^{\prime}=0$. Therefore

$$
\frac{C^{\prime}}{D^{\prime}}=\frac{D^{\prime}-A^{\prime}}{D-A}=\frac{B^{\prime}}{B}
$$

or

$$
\gamma=C+(D-A) u-B u^{2}=V\left(c+b u+a u^{2}\right)
$$

(V function of $v ; a, b, c=$ const.) Therefore $\epsilon=0, U=0$ and every asymptotic curve $u=$ const. belongs to a linear complex. In this case

$$
\begin{aligned}
\frac{\gamma^{\prime}}{\gamma} & =\frac{V^{\prime}}{V}, \quad \frac{\gamma^{\prime \prime}}{\gamma}=\frac{V^{\prime \prime}}{V}, \quad B^{\prime}=\frac{V^{\prime}}{V} B, \\
\frac{p q^{\prime}-p^{\prime} q}{\gamma} & =\frac{p\left(q^{\prime}-u p^{\prime}\right)-p^{\prime}(q-u p)}{\gamma}=p \frac{\gamma^{\prime}}{\gamma}-p^{\prime} \\
& =(A+B u) \frac{V^{\prime}}{V}-\left(A^{\prime}+B u \frac{V^{\prime}}{V}\right)=\frac{A V^{\prime}-A^{\prime} V}{V} .
\end{aligned}
$$

And analogously

$$
\frac{p q^{\prime \prime}-p^{\prime \prime} q}{\gamma}=\frac{A V^{\prime \prime}-A^{\prime \prime} V}{V} .
$$

Therefore no one of the coefficients of (5) is dependent upon u, and consequently we can suppose that the projectivity, which carries an asymptotic curve $u=$ const. into another, carries every point of the former into that point of the latter which belongs to the same rectilinear generatrix of the surface (because the corresponding value of v is not changed by this projectivity).

We have in this manner completely demonstrated the stated theorems.

The Institute for Advanced Study

[^0]: ${ }^{1}$ Geometria Proiettiva Differenziale, Bologna, Zanichelli.

