
ON THE SIMULTANEOUS APPROXIMATION 
OF TWO REAL NUMBERS1 

RAPHAEL M. ROBINSON 

If £i> £2, • • • , £n are any real numbers and / is a positive integer, 
then it is well known that integers a\, a<i, • • • , an, b can be found, 
such that 0 < 6 ^ / n and 

I b^k - a* I < 1/ty k = 1, 2, • • • , ». 

The proof is briefly the following.2 Consider the tn + l points 
(r£i, r£2, • • • , r£»), where r = 0, 1, • • • , tn. Reduce mod 1 to con
gruent points in the unit cube (0 ^ xi < 1, • • • , 0 ̂  xn < 1 ). If this cube 
is divided into tn cubes of edge 1/t (including the lower boundaries), 
then at least one of these small cubes must contain two of the re
duced points, say those with r = r' and r = r". With b= \r! — r"\ and 
suitable a's, we evidently satisfy the required inequalities. 

For n = 1, the inequality can be sharpened to 

\b£-a\S l / ( * + l ) , 

b satisfying the condition 0<b^t. For if we consider the points r% 
(r = 0, 1, • • • , /), and mark the points in the interval O ^ x ^ l which 
are congruent to them mod 1, we have at least t-\-2 points marked, 
since corresponding to r = 0 we mark both 0 and 1. Some two of the 
marked points must lie within a distance l / ( / + l) from each other, 
so that the desired conclusion follows. This is the best result, as the 
example £ = 1/(2 + 1) shows. 

The present note solves the corresponding problem for n — 2. For 
larger values of n the problem appears more difficult. 

THEOREM. If £1 and £2 are any real numbers, and s is a positive in
teger, then integers a\, #2, b can be found, such that 0<b^s, and 

( [s112] 1 \ 

For every s, values of £1 and £2 can be found for which the inequalities 
could not both be satisfied if the equality sign were omitted. 

1 Presented to the Society, November 23, 1940. 
2 The method used in this proof (Schubfachprinzip or "pigeonhole principle") was 

first used by Dirichlet in connection with a similar problem. We sketch the proof here 
in order to compare it with the proof of the theorem below, which also uses that 
method. 
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The inequalities may also be written 

l . , I ^ ('/(* + !) f o r f ~ 1 = s = ' ( ' + 1) - 1. 
1 ' " \ l / ( / + 1) for t(t+l) - l ^ s ^ (t+iy- 1. 

I t will be noted that in some intervals the bound does not decrease 
as 5 increases. 

We show first that the theorem is the best possible. We shall think 
of the inequalities in the form just given. If s < (/ + 1)2, then it is evi
dent that £i = l / ( / + l ) , f2 = l / ( / + l ) 2 are a pair of real numbers which 
cannot be approximated simultaneously with an error less than 
l / ( / + l ) ; this settles the second case. For the first case, consider 
the pair of real numbers f i= l / ( s + l ) , £2 = / /(s + l ) . We are to show 
that not both errors can be made less than //(s + 1). We note first that 
b%i and 6£2 differ from integers by the same amount as (s + 1 — b)%\ 
and (s + l—&)£2; hence we may suppose that &rg(s + l ) /2 , and there
fore 0 < 6 £ i ^ l / 2 . In order to make |&£i — #i| < / / ( s + l ) , we must 
have 0<b<L Then 0 < e £ 2 < l . Since &f2^£2 = //(s + l) and l - f t & è 
1 - ( / - 1 ) £ 2 = \-{t-\)t/(s + l)^t/0 + 1), we see that the inequality 
[ && — Ö̂2 I <t/(s + l) cannot be satisfied. 

The theorem evidently follows from the lemma below, by putting 
t=[s1'2]. 

LEMMA. Let s and t be positive integers with s^t. If £i and £2 are any 
real numbers, then integers au a2, b can be found, such that 0<bt^s, 
and 

| % - *i | ^ t/(s + 1), | bh - a21 g l/(f + 1). 

PROOF. Consider the points (r£i, f£2) with r = 0, 1, • • • , s. Mark 
all the points congruent to these mod 1 which fall in the rectangle 
O^zXiSt, 0 ^ x 2 < 1 . There are (s + l)t points to be marked with Xi<t; 
and in addition, the point (/, 0) is marked, corresponding to r = 0. If 
we divide our rectangle into 5 + 1 rectangles of width t/(s-\-l) (closed 
except at the top) by means of vertical lines, then at least one of them 
contains more than / points, all corresponding to different values of r. 
The corresponding values of x2 are / + 1 or more numbers, some two 
of which differ mod 1 by not more than l / ( / + l ) . Thus we find two 
points (r'£i, r'£2) and (r"£i, r"£2), whose horizontal distance mod 1 
does not exceed / /(s + 1) and whose vertical distance mod 1 does not 
exceed l / ( / + l ) . Putting b=\r' — r"\ gives the required result. 
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