ON THE MAPPING OF THE SETS OF 24 POINTS OF THE SYMMETRIC SUBSTITUTION GROUP G_{24} IN ORDINARY SPACE UPON A HYPERQUADRIC CONE

EARL WALDEN

Introduction. The mapping of the sextuples of the symmetric substitution group G_{6} in a plane upon a quadric has been done by Emch. ${ }^{1}$ The 24 permutations of 4 elements $x_{1}, x_{2}, x_{3}, x_{4}$ considered as projective coordinates in ordinary space determine a configuration ${ }^{2}$ which may be mapped on a hypersurface in S_{4}. I shall show that the hypersurface on which we will map is a hyperquadric cone. The map of every configuration on the hyperquadric will be a configuration in ordinary space, invariant under the G_{24}.

The mapping of the G_{24}. We shall represent the elementary symmetric functions as follows:

$$
\begin{aligned}
& \phi_{1}=x_{1}+x_{2}+x_{3}+x_{4}, \\
& \phi_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4}, \\
& \phi_{3}=x_{1} x_{2} x_{3}+x_{1} x_{3} x_{4}+x_{1} x_{2} x_{4}+x_{2} x_{3} x_{4}, \\
& \phi_{4}=x_{1} x_{2} x_{3} x_{4} .
\end{aligned}
$$

Let $y_{i}=A_{i} \phi_{1}^{4}+B_{i} \phi_{1}^{2} \phi_{2}+C_{i} \phi_{2}^{2}+D_{i} \phi_{1} \phi_{3}+E_{i} \phi_{4}$ where $i=1,2,3,4,5$. There are five linearly independent y 's. We shall consider the y 's as the coordinates of a point in S_{4}. Thus to each point in (x), and consequently to each of 24 points in (x), corresponds a point (y) in S_{4}. The locus of the points (y) is a hypersurface of some order in S_{4}.

Let us choose five linearly independent y 's. (For every choice of y 's we will get some hypersurface and all these hypersurfaces will be linearly related.)

$$
\begin{aligned}
\rho y_{1} & =\sum x_{1}^{4}=\phi_{1}^{4}-4 \phi_{1}^{2} \phi_{2}+2 \phi_{2}^{2}+4 \phi_{1} \phi_{3}-4 \phi_{4}, \\
\rho y_{2} & =\sum x_{1}^{2} x_{2}^{2}=\phi_{2}^{2}-2 \phi_{1} \phi_{3}+2 \phi_{4}, \\
\rho y_{3} & =\sum x_{1}^{3} x_{2}=\phi_{1}^{2} \phi_{2}-2 \phi_{2}^{2}-\phi_{1} \phi_{3}+4 \phi_{4}, \\
\rho y_{4} & =\sum x_{1}^{2} x_{2} x_{3}=\phi_{1} \phi_{3}-4 \phi_{4}, \\
\rho y_{5} & =\sum x_{1} x_{2} x_{3} x_{4}=\phi_{4} .
\end{aligned}
$$

If we eliminate the ϕ 's we get a hyperquadric cone Q given by

[^0]\[

$$
\begin{equation*}
y_{1}\left(y_{2}+2 y_{4}+6 y_{5}\right)+2 y_{2}-y_{3}^{2}-y_{4}^{2}+4 y_{2} y_{4}+12 y_{2} y_{5}-2 y_{3} y_{4}=0 \tag{1}
\end{equation*}
$$

\]

The rank of the matrix of this hyperquadric cone is three. This means that the hyperquadric has a line of vertices. The partial derivatives,

$$
\begin{array}{ll}
\frac{\partial Q}{\partial y_{1}}=y_{2}+2 y_{4}+6 y_{5}, & \frac{\partial Q}{\partial y_{2}}=y_{1}+4 y_{2}+4 y_{4}+12 y_{5} \\
\frac{\partial Q}{\partial y_{3}}=-2 y_{3}-2 y_{4}, & \frac{\partial Q}{\partial y_{4}}=2 y_{1}+4 y_{2}-2 y_{3}-2 y_{4} \\
\frac{\partial Q}{\partial y_{5}}=6 y_{1}+12 y_{2} &
\end{array}
$$

all vanish at the points $V(-4,2,4,-4,1)$ and $V^{\prime}(4,-2,-1,1,0)$ and any point on the join of these two points. Hence this join $V V^{\prime}$ is the vertex of the hyperquadric cone.

Next, the exceptional points of the $(1,24)$ transformation will be considered. To the intersections of $\phi_{1}=0, \phi_{2}=0, \phi_{4}=0$, that is, $\left(1, \omega, \omega^{2}, 0\right),\left(1, \omega, 0, \omega^{2}\right),\left(1,0, \omega, \omega^{2}\right),\left(0,1, \omega, \omega^{2}\right),\left(1, \omega^{2}, \omega, 0\right)$, $\left(1, \omega^{2}, 0, \omega\right),\left(1,0, \omega^{2}, \omega\right),\left(0,1, \omega^{2}, \omega\right)$, corresponds $y_{1}=y_{2}=y_{3}=y_{4}=y_{5}$ $=0$, which represents no point. These 8 points are fundamental points of the transformation. Hereafter they will be called the F-points.

To the first neighborhood of the F-points corresponds the join of $V^{\prime}(4,-2,-1,1,0)$ and $V(-4,2,4,-4,1)$. For example, to the first neighborhood of $\left(1, \omega, \omega^{2}, 0\right)$, that is, $P_{d}\left(1+d_{1}, \omega+d_{2}, \omega^{2}+d_{3}, d_{4}\right)$, corresponds

$$
\begin{aligned}
& y_{1}=4\left(d_{1}+d_{2}+d_{3}\right)=4\left(d_{1}+d_{2}+d_{3}+d_{4}\right)-4\left(d_{4}\right) \\
& y_{2}=-2\left(d_{1}+d_{2}+d_{3}\right)=-2\left(d_{1}+d_{2}+d_{3}+d_{4}\right)+2\left(d_{4}\right) \\
& y_{3}=-\left(d_{1}+d_{2}+d_{3}-3 d_{4}\right)=-1\left(d_{1}+d_{2}+d_{3}+d_{4}\right)+4\left(d_{4}\right) \\
& y_{4}=d_{1}+d_{2}+d_{3}-3 d_{4}=1\left(d_{1}+d_{2}+d_{3}+d_{4}\right)-4\left(d_{4}\right) \\
& y_{5}=d_{4}=0\left(d_{1}+d_{2}+d_{3}+d_{4}\right)+1\left(d_{4}\right)
\end{aligned}
$$

which is the join of V and V^{\prime}. If P_{d} is on $\phi_{1}=0$, to it corresponds the point $V(-4,2,4,-4,1)$. To any point on $\phi_{1}=0, \phi_{4}=0$ corresponds the point $T(2,1,-2,0,0)$. A generic hyperplane, $y_{1}+\lambda_{1} y_{2}+\lambda_{2} y_{3}+\lambda_{3} y_{4}$ $+\lambda_{4} y_{5}=0$, cuts Q in a quadric q and the line $V T$ in a point R on q to which corresponds in (x) a quartic surface

$$
\begin{array}{r}
\phi_{1}^{4}+\left(\lambda_{2}-4\right) \phi_{1}^{2} \phi_{2}+\left(4-2 \lambda_{1}-\lambda_{2}+\lambda_{3}\right) \phi_{1} \phi_{3}+\left(2+\lambda_{1}-2 \lambda_{2}\right) \phi_{2}^{2} \tag{2}\\
+\left(2 \lambda_{1}+4 \lambda_{2}-4 \lambda_{3}+\lambda_{4}-4\right) \phi_{4}=0
\end{array}
$$

which has $\phi_{1}=0, \phi_{4}=0$ (which is composed of 4 lines) as double tangents. That is, the line $\phi_{1}=0, x_{4}=0$ is tangent to (2) at the points $\left(1, \omega, \omega^{2}, 0\right)$ and ($1, \omega^{2}, \omega, 0$) ; the line $\phi_{1}=0, x_{3}=0$ is tangent to (2) at the points $\left(1, \omega, 0, \omega^{2}\right)$ and $\left(1, \omega^{2}, 0, \omega\right)$; the line $\phi_{1}=0, x_{2}=0$ is tangent to (2) at the points ($1,0, \omega, \omega^{2}$) and ($1,0, \omega^{2}, \omega$) and the line $\phi_{1}=0, x_{1}=0$ is tangent to (2) at $\left(0,1, \omega, \omega^{2}\right)$ and $\left(0,1, \omega^{2}, \omega\right)$. Thus to a generic point R on $V T$ corresponds the first neighborhood of the F points, on $\phi_{1}=0, \phi_{4}=0$.

To a hyperplane through $V V^{\prime}$

$$
y_{1}+\lambda_{1} y_{2}+\lambda_{2} y_{3}+\left(2 \lambda_{1}+\lambda_{2}-4\right) y_{4}+\left(6 \lambda_{1}-12\right) y_{5}=0
$$

corresponds the quartic

$$
\phi_{1}^{4}+\left(\lambda_{2}-4\right) \dot{\phi}_{1}^{2} \phi_{2}+\left(2+\lambda_{1}-2 \lambda_{2}\right) \phi_{2}^{2}=0
$$

which is the product of two quadrics of the form $\phi_{1}^{2}+\mu \phi_{2}=0$. Thus a generic hyperplane of the bundle through $V V^{\prime}$ cuts Q in two planes to which correspond in (x) two quadrics of the symmetric pencil $\phi_{1}^{2}+\mu \phi_{2}=0$.

To a hyperplane through $V V^{\prime}$ tangent to Q at some point $P(a, b, c, d, e)$ on Q and not on $V V^{\prime}$,

$$
\begin{aligned}
(b+2 d+b e) y_{1} & +(a+4 b+4 d+12 e) y_{2}-(2 c+2 d) y_{3} \\
& +(2 a+4 b-2 c-2 d) y_{4}+(6 a+12 b) y_{5}=0
\end{aligned}
$$

corresponds

$$
\begin{aligned}
(b+2 d+b e) \phi_{1}^{4} & -(4 b+10 d+2 c+24 e) \phi_{1}^{2} \phi_{2} \\
& +(a+6 b+4 c+12 d+24 e) \phi_{2}^{2}=0 .
\end{aligned}
$$

This quartic surface is the square of a quadric if $(4 b+10 d+2 c+24 e)^{2}$ $-4(b+2 d+b e)(a+6 b+4 c+12 d+24 e)=0$ or if $-4\left[\left(2 b^{2}-c^{2}-d^{2}\right)\right.$ $+a(b+2 d+6 e)+4 b d+12 b e+2 c d]=0$. But this is simply the condition that the point $P(a, b, c, d, e)$ lie on Q which we assumed in the beginning. Thus to a hyperplane through $V V^{\prime}$ tangent to Q at some point P not on $V V^{\prime}$ corresponds a quartic which is the square of a quadric $\phi_{1}^{2}+\mu \phi_{2}=0$.

To a hyperplane through $V V^{\prime} T$,

$$
y_{1}+6 y_{2}+4 y_{3}+12 y_{4}+24 y_{5}=0,
$$

corresponds the quartic $\phi_{1}^{4}=0$ which is the plane $\phi_{1}=0$ counted four times.

To a hyperplane through the line $V T$,

$$
y_{1}+\left(2 \lambda_{2}-2\right) y_{2}+\lambda_{2} y_{3}+\lambda_{3} y_{4}+\left(4 \lambda_{3}-8 \lambda_{2}+8\right) y_{5}=0
$$

corresponds the quartic

$$
\phi_{1}^{4}+\left(\lambda_{2}-4\right) \phi_{1}^{2} \phi_{2}+\left(8-5 \lambda_{2}+\lambda_{3}\right) \phi_{1} \phi_{3}=0
$$

which is composed of the plane $\phi_{1}=0$ and the cubic surface $\phi_{1}^{3}+\left(\lambda_{2}-4\right) \phi_{1} \phi_{2}+\left(8-5 \lambda_{2}+\lambda_{3}\right) \phi_{3}=0$.

In general if a hypersurface contains a plane of Q, a factor $\phi_{1}^{2}+\mu \phi_{2}$ splits off of the corresponding surface in (x). And if the hypersurface contains the line $V T$, the factor ϕ_{1} splits off in (x).

Mapping of intersections of the hyperquadric cone. A generic hypersurface H_{n} cuts Q in a surface $F_{2 n}$ to which corresponds in (x) a surface $F_{4 n}^{\prime}$. From the form of the transformation one can see that each of the four lines $\phi_{1}=0$ and $\phi_{4}=0$ is an n-fold double tangent, and each of the 6 points of intersection of $\phi_{1}=0, \phi_{2}=0, \phi_{3}=0,(1, i,-1, i)$, $(1,-i,-1, i),(1, i,-i,-1),(1,-i, i,-1),(i,-i, 1,-1)$, ($i,-i,-1,1$), is an n-fold point of $F_{4 n}^{\prime}$.

To a generic surface F_{n}^{\prime} in (x) corresponds on Q a surface whose order can always be determined. Suppose F_{n}^{\prime} does not pass through the F points. The equation of F_{n}^{\prime} will contain a term of the form ϕ_{3}^{m} where $3 m=n$. A generic quartic surface F_{4}^{\prime} and another quartic surface f_{4}^{\prime} cuts F_{n}^{\prime}, or $F_{3 m}^{\prime}$, in $48 m$ points which form $2 m$ sets of 24 points each. To these $2 m$ points correspond in (y) the $2 m$ points that are on the plane of intersection of the two hyperplanes F and f that correspond to the two quartic surfaces F_{4}^{\prime} and f_{4}^{\prime}. But these $2 m$ points are the intersections of the surface in (y), that corresponds to F_{n}^{\prime}, and the plane common to F and f. Thus the surface in (y) that corresponds to F_{n}^{\prime} is of order $2 m$, where $3 m=n$.

The surface $F_{2 n}$ on Q is cut out by a hypersurface H which may pass through a plane of Q. For example, when F_{n}^{\prime} is a sextic surface, H is a hyperquadric, call it H_{2}, which passes through a plane of Q. That is, the intersection of H_{2} and Q is composed of a plane and a cubic to which corresponds in (x) a quadric and a cubic surface. More generally H_{m} cuts Q in a surface to which corresponds in (x) a surface of order $4 m$. In order that it reduce to $3 m$ it is necessary that a factor of order m split off. We have seen that the factors will be of the form ϕ_{1}^{d} and $\left(\phi_{1}^{2}+\mu \phi_{2}\right)^{\beta}$, where $d+2 \beta=m$, and H_{m} will contain $V T$ two times and β planes of Q. For example, if $n=9$ and $m=3, H_{m}$ will be a cubic that contains $V T$ and one plane of Q.

Suppose two hypersurfaces H_{m} and H_{n} cut Q. To this intersection C will correspond in (x) the intersections of two surfaces $F_{4 m}^{\prime}$ and $F_{4 n}$
which is a curve C^{\prime} of order $16 m n$. Thus to $C_{m n}$ in (y) correspond in (x) $C_{18 m n}^{\prime}$.

To a generic curve $C_{n}{ }^{\prime}$ in (x) which is the complete intersection of two symmetric surfaces F_{r}^{\prime} and F_{s}^{\prime}, where $r s=n$, corresponds a curve in S_{4} whose order can be determined. If the two surfaces do not go through the F points, each surface will have a term of the form ϕ_{3}^{d} where $3 d=r$ or $3 d \beta=s$. A surface F_{4}^{\prime} will intersect F_{r}^{\prime} and F_{s}^{\prime}, and consequently C_{n}^{\prime}, in $36 d$ points to which corresponds in (y) $36 d \beta / 24$ points which are intersections of the hyperplane that corresponds to F_{4}^{\prime} and the curve in (y) that corresponds to $C_{n}{ }^{\prime}$. Hence order of the curve in (y) that corresponds to C_{n}^{\prime} is $36 d \beta / 24$ or $\frac{1}{6} n$.

The order of the curve $C_{16 m n}^{\prime}$ in (x) that corresponds to the intersection of H_{m} and H_{n} on Q may be reduced if either or both of H_{m} and H_{n} contain a plane of Q or the line $V T$. For example if H_{m} contains $V T$ then the curve in (x) is $C_{16 n(m-1)}$ and if H_{m} contains a plane of Q the curve in (x) is $C_{16 n(m-2)}$.

Symmetric quartics. To a net of hyperplanes through a line s cutting Q in A and B corresponds in (x) a net of quartic surfaces with the same 4 double tangents $\phi_{1}=0, \phi_{4}=0$ and with two sets of 24 points each A^{\prime} and B^{\prime} corresponding to A and B as base points outside of the $8 F$-points which are the points of tangency. When s is tangent to Q the quartic surfaces in (x) are all tangent to each other at 24 points. Now consider any two quadrics q^{\prime} and $q^{\prime \prime}$ on Q. The common hypertangent planes of q^{\prime} and $q^{\prime \prime}$ envelop two hyperquadric cones. Through a generic point of Q there are two tangent hyperplanes to each of the cones. To q^{\prime} and $q^{\prime \prime}$ correspond in (x) two quartic surfaces F_{4}^{\prime} and $F_{4}^{\prime \prime}$. Every tangent hyperplane of one of these cones cuts Q in a quadric which touches q^{\prime} and $q^{\prime \prime}$. To this quadric corresponds a quartic surface in (x) which touches F_{4}^{\prime} in 24 points, and $F_{4}^{\prime \prime}$ in 24 points. That is, given two symmetric quartic surfaces F_{4}^{\prime} and $F_{4}^{\prime \prime}$ there exist two systems of symmetric quartic surfaces such that every quartic of the system has 24 point contact with F_{4}^{\prime} and $F_{4}^{\prime \prime}$.

To the intersection of a hyperplane through $V T$ with Q corresponds in (x) a system of symmetric cubic surfaces $\phi_{1}^{3}+\lambda_{1} \phi_{1} \phi_{2}+\lambda_{2} \phi_{3}=0$. Let q^{\prime} be a quadric not through $V T$. Now let I be the vertex of a hyperquadric cone through q^{\prime} whose tangent hyperplanes cut Q in quadrics tangent to q^{\prime}. To these correspond in (x) cubic surfaces and a quartic surface. Thus for a symmetric quartic surface corresponding to a generic quadric on Q there exists a system of cubic surfaces with the property of 24 point contact with the quartic surface.

Georgia State College for Women

[^0]: ${ }^{1}$ This Bulletin, vol. 33 (1927), pp. 745-750.
 ${ }^{2}$ Veronese Annali di Mathematica, (2), vol. 2, p. 93.

