OSCULATING QUADRICS OF RULED SURFACES IN RECIPROCAL RECTILINEAR CONGRUENCES

M. L. MACQUEEN

1. Introduction. Let x be a general point of an analytic non-ruled surface S referred to its asymptotic net in ordinary projective space. By a line l_{1} at the point x we mean any line through the point x and not lying in the tangent plane of the surface at the point x. Dually, a line l_{2} is any line in the tangent plane of the surface at the point x but not passing through the point x. The lines l_{1}, l_{2} are called reciprocal lines if they are reciprocal polar lines with respect to the quadric of Lie at the point x. In this case, when the point x varies over the surface S, the lines l_{1}, l_{2} generate two rectilinear congruences Γ_{1}, Γ_{2} which are said to be reciprocal with respect to the surface. If, however, the point x moves along the u-curve, the locus of the line l_{1} is a ruled surface $R_{1}^{(u)}$ of the congruence Γ_{1}. The osculating quadric along a generator l_{1} of the ruled surface $R_{1}^{(u)}$ is the limit of the quadric determined by the line l_{1} through the point x and the lines l_{1} through two neighboring points P_{1}, P_{2} on the u-curve as each of these points independently approaches the point x along the u-curve. The quadric thus defined will be denoted by $Q_{1}^{(u)}$. A second quadric $Q_{1}^{(v)}$ is determined by three consecutive lines l_{1} at points of the v-curve through the point x. Moreover, there are two quadrics, denoted by $Q_{2}^{(u)}$ and $Q_{2}^{(v)}$, which are associated with two ruled surfaces of the reciprocal congruence Γ_{2} and which can be defined similarly. This note will study the projective differential geometry of the quadrics thus defined.
2. Analytic basis. Let the surface S under consideration be an analytic non-ruled surface whose parametric vector equation, referred to asymptotic parameters u, v, is

$$
\begin{equation*}
x=x(u, v) . \tag{1}
\end{equation*}
$$

The four coordinates x of a variable point x on the surface satisfy two partial differential equations which can be reduced, by a suitably chosen transformation of proportionality factor, to Fubini's canonical form

$$
\begin{equation*}
x_{u u}=p x+\theta_{u} x_{u}+\beta x_{v}, \quad x_{v v}=q x+\gamma x_{u}+\theta_{v} x_{v}, \quad \theta=\log \beta \gamma, \tag{2}
\end{equation*}
$$

in which the subscripts indicate partial differentiation. The coefficients of these equations are functions of u, v and satisfy three integrability conditions which need not be written here.

Two lines l_{1}, l_{2} are reciprocal lines if the line l_{1} joins the point x and the point y defined ${ }^{1}$ by

$$
\begin{equation*}
y=-a x_{u}-b x_{v}+x_{u v} \tag{3}
\end{equation*}
$$

and the line l_{2} joins the points ρ, σ defined by placing

$$
\begin{equation*}
\rho=x_{u}-b x, \quad \sigma=x_{v}-a x \tag{4}
\end{equation*}
$$

where a, b are functions of u, v. As u, v vary, the lines l_{1}, l_{2} generate two rectilinear congruences Γ_{1}, Γ_{2} which are reciprocal with respect to the surface.

The curves corresponding to the developables of the congruence Γ_{1} are called the Γ_{1}-curves of the congruence, and those corresponding to the developables of the congruence Γ_{2} the Γ_{2}-curves of the congruence. The differential equation of the Γ_{1}-curves is

$$
\begin{equation*}
(F-2 a \beta+\beta \psi) d u^{2}-\left(b_{v}-a_{u}\right) d u d v-(G-2 b \gamma+\gamma \phi) d v^{2}=0 \tag{5}
\end{equation*}
$$

where F, G are defined by the formulas

$$
F=p-b_{u}+b \theta_{u}-b^{2}+a \beta, \quad G=q-a_{v}+a \theta_{v}-a^{2}+b \gamma
$$

and ϕ, ψ by

$$
\phi=\left(\log \beta \gamma^{2}\right)_{u}, \quad \psi=\left(\log \beta^{2} \gamma\right)_{v}
$$

If k_{1}, k_{2} are the roots of the equation

$$
\begin{equation*}
k^{2}+(A+B) k+A B-(F-2 a \beta+\beta \psi)(G-2 b \gamma+\gamma \phi)=0 \tag{6}
\end{equation*}
$$

where the functions A, B are defined by

$$
A=-a_{u}-a b+\beta \gamma+\theta_{u v}, \quad B=-b_{v}-a b+\beta \gamma+\theta_{u v}
$$

the corresponding points

$$
y+k_{i} x, \quad i=1,2
$$

are the focal points of the line l_{1}. Furthermore, the differential equation of the Γ_{2}-curves is

$$
\begin{equation*}
F d u^{2}-\left(b_{v}-a_{u}\right) d u d v-G d v^{2}=0 \tag{7}
\end{equation*}
$$

If τ_{1}, τ_{2} are the roots of the equation

$$
\begin{equation*}
F+\left(b_{v}-a_{u}\right) \tau-G \tau^{2}=0 \tag{8}
\end{equation*}
$$

the corresponding points

$$
\rho+\tau_{i} \sigma, \quad i=1,2
$$

[^0]are the focal points of the line l_{2}. It will be assumed that the coefficients of $d u^{2}$ and $d v^{2}$ in equations (5), (7) are all nonzero. In this case the Γ_{1}-curves and the Γ_{2}-curves of two reciprocal congruences form conjugate nets if, and only if, $b_{v}-a_{u}=0$.
3. Osculating quadrics of ruled surfaces of the congruence Γ_{1}. Any point z, except the point y, on the line l_{1} at the point x is given by the equation
\[

$$
\begin{equation*}
z=x+\omega y, \quad \omega \text { scalar } \tag{9}
\end{equation*}
$$

\]

As the point x varies along the u-curve, the line l_{1} generates a ruled surface $R_{1}^{(u)}$. Equation (9) is the parametric vector equation of this ruled surface, u, ω being the independent parameters. The asymptotic curves on $R_{1}^{(u)}$ consist of the lines l_{1} and the integral curves of the differential equation

$$
\begin{equation*}
L_{1} d u+2 M_{1} d \omega=0 \tag{10}
\end{equation*}
$$

where L_{1}, M_{1} are determinants of the fourth order defined by

$$
L_{1}=\left(z_{u u}, z, z_{u}, z_{\omega}\right), \quad M_{1}=\left(z_{u \omega}, z, z_{u}, z_{\omega}\right)
$$

Differentiating equation (9) and using equations (2), (3) to calculate the values of L_{1}, M_{1}, we find that equation (10) can be written in the form

$$
\begin{equation*}
\frac{d \omega}{d u}=-\frac{\beta+C \omega+D \omega^{2}}{2(F-2 a \beta+\beta \psi)} \tag{11}
\end{equation*}
$$

where we have placed

$$
\begin{aligned}
C= & F_{u}-2(a \beta)_{u}+(\beta \psi)_{u}+2 \beta A \\
D= & \beta A^{2}-a(F-2 a \beta+\beta \psi)^{2}+A(F-2 a \beta+\beta \psi)_{u} \\
& -(F-2 a \beta+\beta \psi)\left[p_{v}+\beta q-a p+A\left(b-\theta_{u}\right)+A_{u}\right] .
\end{aligned}
$$

Any point X, except the point z, on the tangent at the point z of the curved asymptotic on $R_{1}^{(u)}$ is defined by placing

$$
\begin{equation*}
X=\lambda z+d z / d u, \quad \lambda \text { scalar. } \tag{12}
\end{equation*}
$$

If we use the tetrahedron x, ρ, σ, y as a local tetrahedron of reference with a unit point chosen so that a point

$$
x_{1} x+x_{2} \rho+x_{3} \sigma+x_{4} y
$$

has local coordinates proportional to x_{1}, \cdots, x_{4}, we find that the local coordinates of the point X are given by

$$
\begin{align*}
& x_{1}=b+\lambda+\left[a(F-2 a \beta+\beta \psi)+b A+p_{v}+\beta q-a p\right] \omega, \\
& x_{2}=1+A \omega, \\
& x_{3}=(F-2 a \beta+\beta \psi) \omega, \tag{13}\\
& x_{4}=\omega \lambda-\left(b-\theta_{u}\right) \omega-\frac{\beta+C \omega+D \omega^{2}}{2(F-2 a \beta+\beta \psi)} .
\end{align*}
$$

Homogeneous elimination of ω, λ from these equations gives the algebraic equation of the quadric $Q_{1}^{(u)}$, referred to the tetrahedron x, ρ, σ, y, namely

$$
\begin{align*}
\beta(F & -2 a \beta+\beta \psi) x_{2}^{2}+H x_{3}^{2}+2(F-2 a \beta+\beta \psi)^{2} x_{2} x_{4} \\
& -2 A(F-2 a \beta+\beta \psi) x_{3} x_{4} \tag{14}\\
& -2(F-2 a \beta+\beta \psi) x_{1} x_{3}+2 P x_{2} x_{3}=0
\end{align*}
$$

where the coefficients H, P are defined by

$$
\begin{align*}
H & =a(F-2 a \beta+\beta \psi)-3 A\left(b-\theta_{u}\right)-A_{u}+p_{v}+\beta q-a p, \tag{15}\\
P & =\left(2 b-\theta_{u}\right)(F-2 a \beta+\beta \psi)+\frac{1}{2}(F-2 a \beta+\beta \psi)_{u} .
\end{align*}
$$

The equation of the quadric $Q_{i}^{(0)}$ can be written by interchanging u and v and making the appropriate symmetrical interchanges of the other symbols. The result is

$$
\begin{align*}
K x_{2}^{2} & +\gamma(G-2 b \gamma+\gamma \phi) x_{3}^{2}+2(G-2 b \gamma+\gamma \phi)^{2} x_{3} x_{4} \\
& -2 B(G-2 b \gamma+\gamma \phi) x_{2} x_{4} \tag{16}\\
& -2(G-2 b \gamma+\gamma \phi) x_{1} x_{2}+2 Q x_{2} x_{3}=0
\end{align*}
$$

where the coefficients K, Q are given by

$$
\begin{align*}
K & =b(G-2 b \gamma+\gamma \phi)-3 B\left(a-\theta_{v}\right)-B_{v}+q_{v}+\gamma p-b q \tag{17}\\
Q & =\left(2 a-\theta_{v}\right)(G-2 b \gamma+\gamma \phi)+\frac{1}{2}(G-2 b \gamma+\gamma \phi)_{v} .
\end{align*}
$$

Some properties of the quadrics $Q_{1}^{(u)}, Q_{1}^{(v)}$ will now be deduced. In the first place, the tangent plane, $x_{4}=0$, intersects each of the quadrics in a conic. The conic of intersection of the tangent plane and the quadric $Q_{1}^{(u)}$ touches the u-tangent at the point x and intersects the v-tangent in the point whose local coordinates are

$$
\begin{equation*}
\left(\frac{1}{2} H, 0, F-2 a \beta+\beta \psi, 0\right) \tag{18}
\end{equation*}
$$

Similarly, the quadric $Q_{1}^{(v)}$ is intersected by the tangent plane in a conic which is tangent to the v-tangent at the point x and intersects the u-tangent in the point

$$
\begin{equation*}
\left(\frac{1}{2} K, G-2 b \gamma+\gamma \phi, 0,0\right) \tag{19}
\end{equation*}
$$

The face $x_{3}=0$ of the tetrahedron of reference intersects the quadric $Q_{1}^{(u)}$ in the line l_{1} and in the line whose equations are

$$
\begin{equation*}
\beta x_{2}+2(F-2 a \beta+\beta \psi) x_{4}=0, \quad x_{3}=0 \tag{20}
\end{equation*}
$$

Moreover, the face $x_{2}=0$ cuts the quadric $Q_{1}^{(u)}$ in the line l_{1} and in the line which joins the point (18) to the point on the line l_{1} with local coordinates

$$
\begin{equation*}
(-A, 0,0,1) \tag{21}
\end{equation*}
$$

Similarly, the face $x_{2}=0$ cuts the quadric $Q_{1}^{(0)}$ in the line l_{1} and in the line

$$
\begin{equation*}
\gamma x_{3}+2(G-2 b \gamma+\gamma \phi) x_{4}=0, \quad x_{2}=0 \tag{22}
\end{equation*}
$$

The face $x_{3}=0$ cuts the quadric $Q_{1}^{(v)}$ in the line l_{1} and in the line which passes through the point (19) and meets the line l_{1} in the point

$$
\begin{equation*}
(-B, 0,0,1) \tag{23}
\end{equation*}
$$

The points (21), (23) are found to coincide if, and only if, $a_{u}=b_{v}$. Thus we reach the following conclusion:

The Γ_{1}-curves and the Γ_{2}-curves of two reciprocal rectilinear congru. ences form conjugate nets on the surface if, and only if, the points (21), (23) coincide.

It is well known that two nonsingular quadric surfaces having one, and only one, generator in common intersect elsewhere in a twisted cubic. Elimination of x_{1} between equations (14), (16) gives the cubic cone projecting the curve of intersection of the two quadrics from the point x. This cone has the line l_{1} for a double line, the equations of the nodal tangent planes along the line l_{1} being given by

$$
\begin{equation*}
(F-2 a \beta+\beta \psi) x_{2}^{2}-\left(b_{v}-a_{u}\right) x_{2} x_{3}-(G-2 b \gamma+\gamma \phi) x_{3}^{2}=0 \tag{24}
\end{equation*}
$$

A glance at equation (5) suffices to substantiate the following statement:

The nodal tangent planes along the double line l_{1} of the cone projecting the curve of intersection of the quadrics $Q_{1}^{(u)}, Q_{1}^{(v)}$ from the point x are the planes which intersect the tangent plane of the surface at the point x in the tangents of the Γ_{1}-curves.

Eliminating x_{2} from equations (14), (16), we obtain the equation of the cone which projects the curve of intersection of the quadrics
$Q_{1}^{(u)}, Q_{1}^{(r)}$ from the vertex ρ of the tetrahedron of reference. This projecting cone is found to be a composite quartic cone, one component being the face $x_{3}=0$ of the tetrahedron of reference. The other component is a cubic cone which is intersected by the face $x_{2}=0$ in a plane cubic curve. Placing $x_{3}=0$ in the equation of this curve, we find the intersections of the curve with the line l_{1}. It is now easy to verify the conclusion:

The quadrics $Q_{1}^{(x)}, Q_{1}^{(v)}$ intersect in the line l_{1} and in a twisted cubic which crosses the line l_{1} in its two focal points.
4. Osculating quadrics of ruled surfaces of the congruence Γ_{2}. The equations of the quadrics $Q_{2}^{(u)}, Q_{2}^{(v)}$ can be found without difficulty by applying the method of the preceding section. The details of the calculation need not be reproduced here, but the required equation of the quadric $Q_{2}^{(u)}$, referred to the tetrahedron x, ρ, σ, y, is found to be

$$
\begin{equation*}
\beta x_{1}^{2}-2 F x_{1} x_{3}+2 F^{2} x_{2} x_{4}+2\left(a b-a_{u}\right) F x_{3} x_{4}+2 S x_{1} x_{4}+L x_{4}^{2}=0 \tag{25}
\end{equation*}
$$

where the functions S, L are defined by

$$
\begin{align*}
& S=\frac{1}{2} F_{u}-F \theta_{u}+2 b F-\beta\left(a b-a_{u}\right), \\
& L=\beta F G+F F_{v}-F\left(\theta_{u}-2 b\right)\left(b_{v}-a_{u}\right)+F\left(b_{v}-a_{u}\right)_{u} \tag{26}\\
& \quad-2 S\left(a b-a_{u}\right)-\beta\left(a b-a_{u}\right)^{2} .
\end{align*}
$$

The equation of the quadric $Q_{2}^{(v)}$ is

$$
\begin{equation*}
\gamma x_{1}^{2}-2 G x_{1} x_{2}+2 G^{2} x_{3} x_{4}+2\left(a b-b_{v}\right) G x_{2} x_{4}+2 T x_{1} x_{4}+M x_{4}^{2}=0 \tag{27}
\end{equation*}
$$

where

$$
\begin{align*}
T= & \frac{1}{2} G_{v}-G \theta_{v}+2 a G-\gamma\left(a b-b_{v}\right), \\
M= & \gamma F G+G G_{u}-G\left(\theta_{v}-2 a\right)\left(a_{u}-b_{v}\right)+G\left(a_{u}-b_{v}\right)_{v} \tag{28}\\
& -2 T\left(a b-b_{v}\right)-\gamma\left(a b-b_{v}\right)^{2} .
\end{align*}
$$

The quadric $Q_{2}^{(u)}$ is intersected by the tangent plane in the line l_{2} and also in the line

$$
\begin{equation*}
\beta x_{1}-2 F x_{3}=0, \quad x_{4}=0 \tag{29}
\end{equation*}
$$

The face $x_{3}=0$ cuts the quadric $Q_{2}^{(u)}$ in a conic which is tangent to the u-tangent at the point ρ and which intersects the edge $x_{1}=x_{3}=0$ in the point with local coordinates

$$
\begin{equation*}
\left(0, L, 0,-2 F^{2}\right) \tag{30}
\end{equation*}
$$

The face $x_{1}=0$ cuts the quadric $Q_{2}^{(u)}$ in the line l_{2} and in the line which joins the point

$$
\begin{equation*}
\left(0, a_{u}-a b, F, 0\right) \tag{31}
\end{equation*}
$$

on the line l_{2} to the point (30).
Similarly, the tangent plane intersects the quadric $Q_{2}^{(v)}$ in the line l_{2} and in the line

$$
\begin{equation*}
\gamma x_{1}-2 G x_{2}=0, \quad x_{4}=0 . \tag{32}
\end{equation*}
$$

The plane $x_{2}=0$ cuts this quadric in a conic which is tangent to the v-tangent at the point σ and which intersects the edge $x_{1}=x_{2}=0$ in the point

$$
\begin{equation*}
\left(0,0, M,-2 G^{2}\right) \tag{33}
\end{equation*}
$$

The face $x_{1}=0$ intersects the quadric $Q_{2}^{(v)}$ in the line l_{2} and in the line which joins the point

$$
\begin{equation*}
\left(0, G, b_{v}-a b, 0\right) \tag{34}
\end{equation*}
$$

on the line l_{2} to the point (33). The following conclusion is immediate.
If the points (31), (34) coincide respectively with the points σ, ρ, the. Γ_{1}-curves and the Γ_{2}-curves form conjugate nets.

Elimination of x_{2} from equations (25), (27) yields the equation of the cubic cone projecting from the point ρ the curve of intersection of the quadrics $Q_{2}^{(u)}, Q_{2}^{(v)}$. The line l_{2} is a double line of this cone, the nodal tangent planes along the line l_{2} being given by

$$
\begin{equation*}
x_{1}^{2}-\left(b_{v}-a_{u}\right) x_{1} x_{4}-\left[F G+\left(a b-b_{v}\right)\left(a b-a_{u}\right)\right] x_{4}^{2}=0 \tag{35}
\end{equation*}
$$

It is now easy to verify the conclusion :
The two nodal tangent planes along the double line l_{2} of the cone projecting the curve of intersection of the quadrics $Q_{2}^{(u)}, Q_{2}^{(0)}$ from the point ρ intersect the line l_{1} in two points which separate the points x, y harmonically if, and only if, the Γ_{1}-curves and the Γ_{2}-curves form conjugate nets.

Finally, simple calculations suffice to demonstrate the following theorem:

The quadrics $Q_{2}^{(u)}, Q_{2}^{(v)}$ intersect in the line l_{2} and in a twisted cubic which cuts the line l_{2} in its two focal points.
5. A special case. The theory of the preceding sections will now be specialized by considering a particular covariant pair of reciprocal
lines associated with the point x of the surface. It is known that the line l_{1} is the projective normal and the line l_{2}. is the reciprocal projective normal in case $a=b=0$ in equations (3), (4). Placing $a=b=0$ in equations (14), (16), one easily shows that the equations of the two quadrics $Q_{1}^{(u)}, Q_{1}^{(v)}$, which we shall call the projective normal quadrics, are respectively

$$
\begin{align*}
\beta \pi x_{2}^{2} & +\left(p_{v}+\beta q+3 \theta_{u} k-k_{u}\right) x_{3}^{2}+2 \pi^{2} x_{2} x_{4}+\left(\pi_{u}-2 \pi \theta_{u}\right) x_{2} x_{3} \\
& -2 \pi k x_{3} x_{4}-2 \pi x_{1} x_{3}=0, \\
\gamma \chi x_{3}^{2} & +\left(q_{u}+\gamma p+3 \theta_{v} k-k_{v}\right) x_{2}^{2}+2 \chi^{2} x_{3} x_{4}+\left(\chi_{v}-2 \chi \theta_{v}\right) x_{2} x_{3} \tag{36}\\
& -2 \chi k x_{2} x_{4}-2 \chi x_{1} x_{2}=0,
\end{align*}
$$

where π, χ, k are defined by the formulas

$$
\pi=p+\beta \psi, \quad \chi=q+\gamma \phi, \quad k=\beta \gamma+\theta_{u v} .
$$

Moreover, by placing $a=b=0$ in equations (25), (27), we obtain the two reciprocal projective normal quadrics $Q_{2}^{(u)}, Q_{2}^{(v)}$, whose equations are respectively

$$
\begin{align*}
& \beta x_{1}^{2}+p\left(p_{v}+\beta q\right) x_{4}^{2}+\left(p_{u}-2 p \theta_{u}\right) x_{1} x_{4}-2 p x_{1} x_{3}+2 p^{2} x_{2} x_{4}=0 \\
& \gamma x_{1}^{2}+q\left(q_{u}+\gamma p\right) x_{4}^{2}+\left(q_{v}-2 q \theta_{v}\right) x_{1} x_{4}-2 q x_{1} x_{2}+2 q^{2} x_{3} x_{4}=0 . \tag{37}
\end{align*}
$$

Southwestern College

[^0]: ${ }^{1}$ In this section we employ the notation used by E. P. Lane in Chapter III of his book Projective Differential Geometry of Curves and Surfaces, Chicago, 1932.

