MEAN-VALUE SURFACES

MAXWELL READE AND E. F. BECKENBACH

Introduction. The real functions

$$
\begin{equation*}
x_{j}=x_{j}(u, v), \quad j=1,2,3 \tag{1}
\end{equation*}
$$

defined and continuous in a finite simply connected domain ${ }^{1} D$, will be said to define a surface S. If the first partial derivatives of the functions (1) are continuous in D, and if

$$
\begin{equation*}
E(u, v)=G(u, v), \quad F(u, v)=0 \tag{2}
\end{equation*}
$$

hold in D, where

$$
E(u, v) \equiv \sum_{j=1}^{3} x_{j u}^{2}, \quad F(u, v) \equiv \sum_{j=1}^{3} x_{j u} x_{j v}, \quad G(u, v) \equiv \sum_{j=1}^{3} x_{j v}^{2}
$$

are the coefficients of the first fundamental quadratic form of S, then the surface is said to be given in isothermic representation by the functions (1) and the parameters u, v are said to be isothermic parameters; the map of D on S is conformal except where $E=G=0$.

In a previous paper, ${ }^{2}$ the authors studied the equation

$$
\begin{equation*}
\sum_{j=1}^{3}\left[\int_{C} x_{j}(u, v) d z\right]^{2}=0, \quad z=u+i v \tag{3}
\end{equation*}
$$

where C is a circle in D; the following necessary and sufficient condition was obtained.

Theorem A. If the functions (1) have continuous partial derivatives of the third order in a finite simply connected domain D, then a necessary and sufficient condition that they map D isothermically either on a surface S that lies on a sphere of finite non-null radius, such that circles are mapped on circles, or on a minimal surface S, is that (3) hold for each circle C in D.

1. Mean-value surfaces. Let the coordinate functions (1) of a surface S be continuous in a finite simply connected domain D; then the circular averages

[^0]\[

$$
\begin{equation*}
x_{j}=A_{j, \rho}(u, v) \equiv \frac{1}{\pi \rho^{2}} \iint_{\xi^{2}+\eta^{2} \leqq \rho^{2}} x_{j}(u+\xi, v+\eta) d \xi d \eta, \quad j=1,2,3 \tag{4}
\end{equation*}
$$

\]

where ρ is a positive constant, will be said to define a mean-value surface S_{ρ} associated with S. We define

$$
A_{j, 0}(u, v) \equiv x_{j}(u, v), \quad j=1,2,3
$$

We note that the functions (4) are defined and have continuous partial derivatives of the first order in an open set of points D_{ρ} which is interior to D; since D_{ρ} is not necessarily a connected set, S_{ρ} may consist of several pieces.

Theorem 1.1. If the functions (1) are continuous in a simply connected domain D, then a necessary and sufficient condition that (3) hold for each circle C in D is that all mean-value surfaces S_{ρ} associated with the surface S, defined by the functions (1), be given in isothermic representation by (4).

Proof. The first partial derivatives of the functions (4) are given by the relations ${ }^{3}$

$$
\begin{aligned}
\frac{\partial A_{j, \rho}}{\partial u} & =\frac{1}{\pi \rho^{2}} \int_{\xi^{2}+\eta^{2}=\rho^{2}} x_{j}(u+\xi, v+\eta) d \eta \\
\frac{\partial A_{j, \rho}}{\partial v} & =-\frac{1}{\pi \rho^{2}} \int_{\xi^{2}+\eta^{2}=\rho^{2}} x_{j}(u+\xi, v+\eta) d \xi, \quad j=1,2,3,
\end{aligned}
$$

which are valid for points of D_{ρ}; hence

$$
\begin{align*}
& \sum_{j=1}^{3}\left[\int_{\xi^{2}+\eta_{2}=\rho^{2}} x_{j}(u+\xi, v+\eta)(d \xi+i d \eta)\right]^{2} \tag{5}\\
&=-\pi^{2} \rho^{4}\left[E_{\rho}-G_{\rho}+2 i F_{\rho}\right]
\end{align*}
$$

where E_{ρ}, F_{ρ} and G_{ρ} are the coefficients of the first fundamental quadratic form of S_{ρ}. From (2), (3) and (5) we obtain the theorem.

From Theorems A and 1.1 we obtain the following result.
Theorem 1.2. If the functions (1) have continuous partial derivatives of the third order in a finite simply connected domain D, then a necessary and sufficient condition that they map D isothermically either on a surface S that lies on a sphere of finite non-null radius, such that circles are mapped on circles, or on a minimal surface S, is that all mean-value surfaces S_{ρ} associated with the surface S defined by the functions (1) be given in isothermic representation by (4).

[^1]2. Mean-value surfaces and transformations of axes. In $\S 3$ we shall make use of the following observations.
2.1. S_{ρ} is invariant under rigid transformations in the (x_{1}, x_{2}, x_{3})space; if
$$
x_{j}=a_{j}+\sum_{k=1}^{3} \lambda_{k j} x_{k}, \quad j=1,2,3,
$$
is a rigid transformation, then
$$
A_{j, \rho}^{\prime}(u, v)=a_{j}+\sum_{k=1}^{3} \lambda_{k j} A_{k, \rho}(u, v), \quad j=1,2,3,
$$
where
$$
A_{j, \rho}^{\prime}(u, v) \equiv \frac{1}{\pi \rho^{2}} \iint_{\xi^{2}+\eta^{2} \leq \rho^{2}} x_{j}^{\prime}(u+\xi, v+\eta) d \xi d \eta, \quad j=1,2,3 .
$$
2.2. S_{o} is invariant under each of the reflections
$$
u^{\prime}=u, v^{\prime}=-v,
$$
and
$$
u^{\prime}=-u, v^{\prime}=v .
$$

If, for example,

$$
x_{j}^{\prime}\left(u^{\prime}, v^{\prime}\right) \equiv x_{j}\left(u^{\prime},-v^{\prime}\right), \quad j=1,2,3
$$

then

$$
A_{j, \rho}^{\prime}\left(u^{\prime}, v^{\prime}\right)=A_{j, \rho}\left(u^{\prime},-v^{\prime}\right), \quad j=1,2,3,
$$

where

$$
\begin{equation*}
A_{j, \rho}^{\prime}\left(u^{\prime}, v^{\prime}\right) \equiv \frac{1}{\pi \rho^{2}} \iint_{\xi^{2}+\eta^{2} \leqq \rho^{2}} x_{j}^{\prime}\left(u^{\prime}+\xi, v^{\prime}+\eta\right) d \xi d \eta, \quad j=1,2,3 . \tag{6}
\end{equation*}
$$

2.3. Similarly, S_{ρ} is invariant under rigid transformations in the (u, v)-plane.
2.4. Under the transformation

$$
\begin{equation*}
u^{\prime}=\alpha u, \quad v^{\prime}=\alpha v, \quad \alpha>0, \tag{7}
\end{equation*}
$$

the mean-value surface S_{ρ} is transformed into the mean-value surface $S_{\alpha \rho}^{\prime}$ whose coordinate functions are given by (6), where

$$
x_{j}^{\prime}\left(u^{\prime}, v^{\prime}\right) \equiv x_{j}\left(\frac{u^{\prime}}{\alpha}, \frac{v^{\prime}}{\alpha}\right), \quad j=1,2,3 .
$$

Hence for α fixed, the family of mean-value surfaces $\left[S_{\rho}\right.$] associated with a given surface S is identical with the family of mean-value surfaces whose coordinate functions are given by (6); under the transformation (7), each member of one family is congruent to a member. of the second family.
3. Conformal mean-value surfaces. Since, by Theorem 1.2, the only smooth surfaces in isothermic representation for which all associated mean-value surfaces are given in isothermic representation by (4) are (a) spherical surfaces, in representation whereby circles are mapped on circles, and (b) minimal surfaces, the question arises as to the nature of the mean-value surfaces in these two cases.

Theorem 3.1. If the functions (1) map a finite simply connected domain D isothermically on a minimal surface S, then each mean-value surface S_{ρ} associated with S is a minimal surface given in isothermic representation by (4) and coinciding with S for (u, v) in D_{ρ}.

Proof. By a theorem of Weierstrass, ${ }^{4}$ the functions (1) are harmonic in D; consequently it follows from the mean-value property of harmonic functions that the functions (4) coincide with the functions (1) in the open set D_{ρ}. Hence all mean-value surfaces associated with minimal surfaces given in isothermic representation by (1) are themselves minimal surfaces given in isothermic representation by (4); the surface S_{ρ} coincides with S for (u, v) in D_{ρ}.

Theorem 3.2. If the functions (1) are not identically constant and if they map a finite simply connected domain D isothermically on a surface S that lies on a sphere S of finite non-null radius a, such that circles are mapped on circles, then each mean-value surface S_{ρ} associated with S lies on a surface of revolution T_{ρ} and is given in isothermic representation by (4). Further, for $0<\rho<\infty, T_{\rho}$ is not a sphere.

Proof. It has been pointed out, in a recently published paper, ${ }^{5}$ that the functions (1) may be continued isothermically to map the entire closed u, v-plane isothermically on the whole of S; further, the functions (1) have the representation

[^2]\[

$$
\begin{align*}
& x_{1}=x_{1}(u, v) \equiv a_{1}+\frac{2 a|k| R f(z)}{|f(z)|^{2}+k^{2}}, \\
& x_{2}=x_{2}(u, v) \equiv a_{2}+\frac{2 a|k| \Im f(z)}{|f(z)|^{2}+k^{2}}, \tag{8}\\
& x_{3}=x_{3}(u, v) \equiv k\left[1-\frac{2 a|k|}{|f(z)|^{2}+k^{2}}\right],
\end{align*}
$$
\]

where $f(z)$ has one of the following forms:

$$
f(z) \equiv \alpha z+\beta, \quad f(z) \equiv \alpha \bar{z}+\beta
$$

where α and β are constants. In (8), $k=a_{3} \pm a,|k|$ is the maximum of the two quantities $\left|a_{3}+a\right|$ and $\left|a_{3}-a\right|$ and (a_{1}, a_{2}, a_{3}) are the coordinates of the center of S.

From 2.1-2.3, it follows that we may assume $a_{1}=a_{2}=a_{3}=0, k=a$, in (8), and that we may assume the function $f(z)$ is given by

$$
\begin{equation*}
f(z) \equiv \alpha z, \quad \alpha>0 \tag{9}
\end{equation*}
$$

This is equivalent to assuming that the point $z=\infty$ corresponds to the point $P:(0,0, a)$ on S, that the point $z=0$ corresponds to the point $P^{\prime}:(0,0,-a)$ which is diametrically opposite P, and that the point in the z-plane corresponding to ($a, 0,0$) is real and positive. Since we are investigating all mean-value surfaces associated with S, it follows from 2.4 that we may take $\alpha=1$ in (9), in which case the functions (1) have the following familiar representation, as given by (8) :

$$
\begin{align*}
& x_{1}=x_{1}(u, v) \equiv \frac{2 a^{2} u}{u^{2}+v^{2}+a^{2}}, \\
& x_{2}=x_{2}(u, v) \equiv \frac{2 a^{2} v}{u^{2}+v^{2}+a^{2}}, \tag{10}\\
& x_{3}=x_{3}(u, v) \equiv a\left[1-\frac{2}{u^{2}+v^{2}+a^{2}}\right] .
\end{align*}
$$

If C_{r} is the circle $u^{2}+v^{2}=r^{2}$, and if

$$
z=u+i v=r e^{i \theta}
$$

then (4) and (10) yield

$$
\begin{aligned}
A_{1, \rho}(u, v)+i A_{2, \rho}(u, v) & =e^{i \theta}\left[A_{1, \rho}(r, 0)+i A_{2, \rho}(r, 0)\right] \\
A_{3, \rho}(u, v) & =A_{3, \rho}(r, 0)
\end{aligned}
$$

from which it follows that the map of C_{r} on the mean-value surface T_{ρ}, associated with the sphere \mathcal{S} which is defined by (10), is a circle C_{r}^{*} in a plane perpendicular to the x_{3}-axis; moreover, the center of C_{r}^{*} is on the x_{3}-axis. Since S_{ρ} lies on T_{ρ}, it follows that the functions (4) $\operatorname{map} D_{\rho}$ isothermically on a surface that lies on the surface of revolution T_{ρ}.

In $\S 4$ it will appear that for $0<\rho<\infty, T_{\rho}$ is not a sphere. Nevertheless, we shall call T_{ρ} a mean-value sphere.
4. Mean-value spheres. The mean-value sphere T_{ρ} is a surface of revolution about the x_{3}-axis. Accordingly, to investigate T_{ρ}, it is sufficient to study the intersection T_{ρ}^{*} of T_{ρ} with the plane $x_{2}=0$. Since, by (10),

$$
x_{2}(u,-v) \equiv-x_{2}(u, v)
$$

it follows that the intersection of T_{ρ} with the plane $x_{2}=0$ can be obtained from (4) by setting $v=0$ in (10). A computation yields the following coordinate functions for T_{ρ}^{*} :

$$
\begin{align*}
x_{1} & =A_{1, \rho}(u, 0) \\
& \equiv 4 a^{2} u /\left[a^{2}+\rho^{2}+u^{2}+\left(\left(a^{2}+\rho^{2}-u^{2}\right)^{2}+4 a^{2} u^{2}\right)^{1 / 2}\right] \\
x_{3} & =A_{3, \rho}(u, 0) \tag{11}\\
& \equiv a-\frac{2 a^{3}}{\rho^{2}} \log \frac{a^{2}+\rho^{2}-u^{2}+\left(\left(a^{2}+\rho^{2}-u^{2}\right)^{2}+4 a^{2} u^{2}\right)^{1 / 2}}{2 a^{2}}
\end{align*}
$$

We make the following observations.
4.1. The curve T^{*} is symmetric about the x_{3}-axis; since

$$
\begin{aligned}
& A_{1, \rho}(u, 0) \equiv A_{1, \rho}\left(\frac{u^{2}+\rho^{2}}{u}, 0\right) \\
& A_{3, \rho}(u, 0) \equiv 2 a-\frac{2 a^{3}}{\rho^{2}} \log \frac{a^{2}+\rho^{2}}{a^{2}}-A_{3, \rho}\left(\frac{u^{2}+\rho^{2}}{u}, 0\right),
\end{aligned}
$$

it follows that T_{ρ}^{*} is also symmetric about the line

$$
\begin{equation*}
x_{3}=A_{3, \rho}\left(\left(a^{2}+\rho^{2}\right)^{1 / 2}, 0\right)=a-\frac{a^{3}}{\rho^{2}} \log \frac{a^{2}+\rho^{2}}{a^{2}} \tag{12}
\end{equation*}
$$

From this symmetry and from the relations,

$$
m=\frac{2 a u}{a^{2}+\rho^{2}-u^{2}}, \quad \frac{d m}{d u}=\frac{2 a\left(a^{2}+\rho^{2}+u^{2}\right)}{\left(a^{2}+\rho^{2}-u^{2}\right)^{2}}
$$

satisfied by the slope m, it follows that T_{ρ}^{*} is convex.
4.2. The height h and the width l of T_{ρ}^{*} are given by

$$
h=\frac{2 a^{3}}{\rho^{2}} \log \frac{a^{2}+\rho^{2}}{a^{2}}, \quad l=\frac{4 a^{2}}{\left(a^{2}+\rho^{2}\right)^{1 / 2}+a}
$$

hence for $0<\rho<\infty$ the curve T_{ρ}^{*} is not a circle. Moreover, since

$$
\lim _{\rho \rightarrow \infty} \frac{l}{h}=\infty
$$

it follows that T_{ρ}^{*} "flattens out" while approaching the point $(0, a)$, as $\rho \rightarrow \infty$.
4.3. Each member of the family $\left[T_{\rho}^{*}\right]$ passes through the point $(0, a)$ and is tangent there to every other member of the family. For $\rho=0, T_{\rho}^{*}$ is the circle $x_{1}^{2}+x_{3}^{2}=a^{2}$, and for $\rho=\infty, T_{\rho}^{*}$ is the point $(0, a)$.
4.4. A computation shows that for $0 \leqq \rho<\rho^{\prime}, T_{\rho^{*}}{ }^{*}$ is inside T_{ρ}^{*}, except for their common point of tangency.

The figure shows T_{ρ}^{*} for $\rho=0,1,2(6)^{1 / 2}, \infty ; a=1$.

From 4.1-4.4 it follows that the family of surfaces $\left[T_{\rho}\right]$ consists of convex surfaces each of which passes through the point $(0,0, a)$ in (x_{1}, x_{2}, x_{3})-space and is tangent there to every other member of the family. The surface T_{ρ} is a surface of revolution about the x_{3}-axis and is symmetric with respect to the plane

$$
x_{3}=a-\frac{a^{3}}{\rho^{2}} \log \frac{a^{2}+\rho^{2}}{a^{2}}
$$

Since the ratio of width to height $\rightarrow \infty$ as $\rho \rightarrow \infty$, it follows that T_{ρ} "flattens out" as $\rho \rightarrow \infty$. For $\rho=0, T_{\rho}$ is the sphere about the origin with radius a, and for $\rho=\infty, T_{\rho}$ is the point $(0,0, a)$. For $0 \leqq \rho^{\prime}<\rho$, T_{ρ} is inside $T_{\rho^{\prime}}$, except for their common point of tangency. From (11) we obtain the following isothermic representation for T_{ρ} :

$$
\begin{aligned}
x_{1} & =A_{1, \rho}(u, v) \\
& \equiv \frac{a^{2} u}{\rho^{2}\left(u^{2}+v^{2}\right)}\left[a^{2}+u^{2}+v^{2}+\rho^{2}-\left(\left(a^{2}+\rho^{2}-u^{2}-v^{2}\right)^{2}+4 a^{2}\left(u^{2}+v^{2}\right)\right)^{1 / 2}\right], \\
x_{2} & =A_{2, \rho}(u, v) \\
& \equiv \frac{a^{2} v}{\rho^{2}\left(u^{2}+v^{2}\right)}\left[a^{2}+u^{2}+v^{2}+\rho^{2}-\left(\left(a^{2}+\rho^{2}-u^{2}-v^{2}\right)^{2}+4 a^{2}\left(u^{2}+v^{2}\right)\right)^{1 / 2}\right], \\
x_{3} & =A_{3, \rho}(u, v) \\
& \equiv a-\frac{2 a^{3}}{\rho^{2}} \log \left[\frac{a^{2}-u^{2}-v^{2}+\rho^{2}+\left(\left(a^{2}+\rho^{2}-u^{2}-v^{2}\right)^{2}+4 a^{2}\left(u^{2}+v^{2}\right)\right)^{1 / 2}}{2 a^{2}}\right] .
\end{aligned}
$$

The Ohio State University and
The University of Michigan

NOTE ON THE DISTRIBUTION OF VALUES OF THE ARITHMETIC FUNCTION $d(m)^{1}$

M. KAC

1. Introduction. Recently Dr. Erdös and the present writer ${ }^{2}$ proved the following theorem:

If $\nu(m)$ denotes the number of different prime divisors of m and $k_{n}(\omega)$ the number of positive integers $m \leqq n$ for which

$$
\nu(m) \leqq \lg \lg n+\omega(2 \lg \lg n)^{1 / 2}
$$

then

$$
\lim _{n \rightarrow \infty} \frac{k_{n}(\omega)}{n}=\pi^{-1 / 2} \int_{-\infty}^{\omega} e^{-u^{2}} d u=D(\omega) .
$$

The purpose of this note is to derive a similar theorem concerning the function $d(m)$ which denotes the number of all different divisors of m (1 and m are included).

In fact we are going to prove the following theorem:
If $r_{n}(\omega)$ denotes the number of positive integers $m \leqq n$ for which

$$
d(m) \leqq 2^{\lg \lg n+\omega(2 \lg \lg n)^{1 / 2}}
$$

[^3]
[^0]: ${ }^{1}$ A domain is a non-null connected open set.
 ${ }^{2}$ Generalizations to space of the Cauchy and Morera theorems, Transactions of this Society, vol. 49 (1941), pp. 354-377; in particular, see p. 365.

[^1]: ${ }^{3}$ T. Radó, Subharmonic Functions, Berlin, 1937, p. 11.

[^2]: ${ }^{4}$ If the functions (1) are harmonic in D, and if (2) holds in D, then the functions (1) are said to form a triple of conjugate harmonic functions; see E. F. Beckenbach and T. Radó, Subharmonic functions and minimal surfaces, Transactions of this Society, vol. 35 (1933), pp. 648-661. Then the theorem of Weierstrass may be stated as follows. A necessary and sufficient condition that the functions (1), defined in the domain D, be the coordinate functions of a minimal surface given in isothermic representation is that they form a triple of conjugate harmonic functions; loc. cit., p. 649.
 ${ }^{5}$ Loc. cit., see Footnote 2; see p. 375.

[^3]: ${ }^{1}$ Presented to the Society, May 2, 1941.
 ${ }^{2}$ P. Erdös and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, American Journal of Mathematics, vol. 62, pp. 738-742.

