
MATHEMATICAL PROBLEMS CONNECTED WITH THE 
BENDING AND BUCKLING OF ELASTIC PLATES 

J. J. STOKER 

1. Introduction. As part of his Gibbs Lecture of last year Theodore 
von Karman [5] considered briefly a number of nonlinear problems 
concerning thin elastic plates. This address will include discussion of 
linear as well as of nonlinear problems concerning elastic plates, with 
special stress on a particular aspect of the nonlinear problems. How
ever, it is not my intention to give a more or less complete survey of 
the literature on the subject; my purpose is rather to present in some 
detail a few specific leading ideas and points of view and to call atten
tion to a number of unsolved problems. 

The mathematical problems connected with thin elastic plates be
long with the many problems from mechanics which have interested 
eminent mathematicians and from which mathematical ideas of fun
damental importance have originated. These problems are of at least 
equal interest in engineering. In fact, a considerable part of the recent 
interest in the subject of thin plates can be attributed to the need 
for numerical solutions of problems which arise in the design of the 
thin-walled structures used in aircraft. The latter problems are in the 
main nonlinear boundary value problems of an involved type about 
which almost nothing of a general nature is known, and, aside from 
the technical difficulties encountered in attempting to obtain numeri
cal solutions, such problems present questions of a purely mathe
matical nature which require elucidation. The latter part of this 
address is largely concerned with the mathematical problems which 
arise in this connection. 

The first at tempts to formulate mathematically the problem of 
flexure of thin elastic plates were probably inspired by the experi
mental researches of Chladni in 1787 on the modes of vibration of 
thin elastic plates. During the next twenty years a number of un
successful attacks were made upon the problem by James Bernoulli 
the Younger and others. In 1809 the French Academy offered a prize 
for a theory of the vibrating plate, which, after some controversy, 
was awarded to Sophie Germain in 1815. Lagrange, who was a mem
ber of the prize committee, corrected the theory of Sophie Germain 
and derived the partial differential equation as we know it now. In 

An address delivered before the New York meeting of the Society on February 21. 
1941, by invitation of the Program Committee; received by the editors November 6, 
1941. 

247 



248 J.J. STOKER [April 

1822 Cauchy, prompted by his membership on a committee to con
sider a paper of Navier on plates, derived for the first time the gen
eral linear theory of elasticity substantially in its present form. It is 
noteworthy that a relatively complicated special problem in elasticity 
had been formulated, in the main correctly, before the general linear 
theory of elasticity was developed. One is tempted to enlarge upon 
the fact that mathematicians of those days felt no distinction between 
pure and applied mathematics and often found inspiration in quite 
special problems taken from mechanics. 

2. The linear bending problem. The next outstanding historical 
event in the theory of plates occurred in 1850 with the publication 
of a famous paper by Kirchoff. In order to explain the significance of 
the work of Kirchoff it is necessary to formulate briefly the problem 

F(x,y) 
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of the bending of a uniform thin plate subjected to forces perpendicu
lar to the plane of the plate. Assuming that the thickness h of the 
plate is small in comparison with its other dimensions and that the 
deflection under load is small in comparison with h, it is shown that 
all stresses in the plate can be calculated in terms of the deflection 
w(x, y) of the "middle surface" of the plate (Figure 1). The function w 
is shown to satisfy the linear differential equation : 

(1) NAAw = F(x, y), A = 
d2 

dx2 + • 
dy2 

in which F is the force per unit area applied at right angles to the 
plane of the plate and N is a constant depending only upon the thick-
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ness h and the material of the plate. Once a solution w(x, y) of (1) 
has been obtained the most important quantities from the practical 
point of view, that is, the corresponding stresses, can be calculated. 
More specifically, the normal stress ax and the shear stresses rxy and 
rxz (on an element perpendicular to the x-axis), for example, are de
termined from w through the formulas 

2w d2w\ 

~d~y2)' 
(2a) <rx = a i l —- + v J, 

\dx2 

/ d2w\ 
(2b) Txy = a2[ —— ), 

\dxdy/ 
d 

(2c) rxz = a3 — (Aw), 
dx 

where ai, a2, a3 depend only upon the thickness of the plate and upon 
the distance z from the middle surface to the point where the stresses 
are to be found. The essential point here is that the a,- are independent 
of xt y, and w. The quantity v in (2a) is a material constant called 
Poisson's ratio. 

To solve the problem posed by Chladni's experiments would require 
the solution of the linear eigenvalue problem associated with (1) (that 
is, that belonging with the biharmonic equation) under the homo
geneous boundary conditions resulting from the assumption that no 
forces are applied at the edges of the plate. This would mean, one 
would suppose, that all three of the expressions on the right side of (2) 
should vanish at an edge perpendicular to the x-axis. But the differ
ential equation is of order four, and consequently only two independ
ent boundary conditions can be imposed. This puzzling fact had not 
escaped the notice of the early workers in the field, but it remained 
for Kirchoff [9] to settle the question. Kirchoff started from the usual 
assumptions of the theory, deduced the expression for the potential 
of the deflected plate, and found by the calculus of variations not 
only the differential equation (1) but also the correct boundary con
ditions. At a free edge he found that condition (2a) equated to zero 
continues to hold but that conditions (2b) and (2c) must be replaced 
by the single relation (for an element of the boundary perpendicular 
to the x-axis) 

dzw dzw 
(2d) q. = —+(2-v) - — = 0. 

dx6 oxoy1 

This was probably the first striking illustration of the power inherent 
in the calculus of variations to furnish the correct and appropriate 
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boundary conditions for a differential equation. Kirchoff had found 
what are now called the natural boundary conditions. The idea of 
natural boundary conditions, when raised to the level of a general con
cept, has proved to be a fruitful one which has been extensively ex
ploited, for example, in the work of R..Courant and his pupils. 

Finally, Kelvin and Tait [8] showed in 1876 how the result of 
Kirchoff could be reconciled physically with the mechanics of the 
situation. They observed that conditions (2a, b, c) could all be pre
scribed for a thick plate and that plausible physical arguments could 
be advanced indicating that conditions (2b) and (2c) coalesce into 
(2d) when the thickness of the plate is made small. This aspect of the 
problem has never been given a rigorous mathematical formulation. 
It is in fact an example of a "boundary layer" problem—a type of 
problem to be discussed later in another connection. 

A vast amount of work has been done in solving the special linear 
boundary value problems arising from (1) for plates of various shapes 
and for various prescribed loading functions F(x, y) and conditions 
at the boundaries. Many of the cases arising in practice have never 
been solved in closed form or by series, and resort has been taken to 
various methods of approximation. One of the most famous of these 
is the method of Ritz [14]. It is interesting to note that Ritz himself 
applied his method first to a number of plate problems. Among the 
problems solved by Ritz is included the first and only solution of the 
Chladni problem, which had remained unsolved for more than a cen
tury. The work of Ritz represents one of the early successes of what 
are now called direct methods of the calculus of variations. However, 
the method of finite differences has perhaps proved even more service
able in obtaining approximate numerical solutions of the linear bend
ing problems [cf. 10 ]. 

Although the linear bending problem can be considered as solved 
in its essentials from the point of view of the mathematician, since 
the relevant existence and uniqueness theorems are available, there 
remain nevertheless some unsolved special problems of mathematical 
interest. For example, there is the curious problem of the rectangular 
plate resting along its edges on rigid supports and subjected to a con
stant downward distributed pressure F. I t is easily shown that a 
downward concentrated force is necessary at the corners of the plate 
in order to maintain the edges in contact with the supports ; if such 
forces are not provided, experiments show that the corners will lift 
up, the plate remaining in contact with the supports only in the cen
tral portions of the sides. This presents a boundary value problem of 
unusual type : The boundary conditions are not given a priori in the 
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form of equalities, since the position of the points at which the edge 
of the plate rises from the supports is not known in advance. The con
dition ax = 0 holds everywhere on a boundary line x = const., but there 
are two alternatives for the other boundary condition, that is, either 
w = 0 with qx S 0 or w < 0 with qx = 0. In spite of this, the problem prob
ably has a unique solution. 

3. The von Karman equations. The linear theory of bending de
scribed above was sufficient for most practical purposes until rather 
recently. With increased use of very thin metal plates, particularly 
in the structures used in aircraft, it has become of practical impor
tance to obtain solutions based on a theory which would permit 

F I G . 2 

deflections much greater than the thickness of the plate. The experi
ments indicate that the linear theory fails to mirror the physical facts 
if deflections as little as one-fourth of the thickness of the plate occur. 
We owe to von Karman [ó] an extension of the theory in which the 
squares of the slopes of the deflected middle surface are not neglected, 
as is the case with the linear theory. At the same time, the hypothesis 
of the linear theory that the stresses in the middle surface are zero is 
given up. The resulting equations of von Karman are the following 
pair of fourth order nonlinear differential equations for two functions, 
the deflection w(x, y) and a function <j)(x, y) from which the stresses in 
the middle surface, often called the "membrane" stresses, are derived: 

(3) NAAw 

(4) AA0 

F(x, y) + h Kt 
\dy2 

d2w 

dy2 dx2 

j/d2w\2 d2w d2wï 

Wdxdy/ dx2 dy2) 

d2ó d2w d2d> d2w 
2 + 

dxdy dxdy dx2 dy2 }• 

The quantity h is the thickness of the plate and £ is a material con-
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stant. The stresses <TX , rxy
f , ay , in the middle surface of the plate 

(Figure 2) are obtained from 0 by the formulas 

( 5 ) (J x — - ) Txy — •) (Ty = ' 

dy2 dxdy dx2 

The boundary conditions for w are linear; they remain the same as for 
the linear bending problem. At a free edge, for example, the Kirchoff 
conditions are to be satisfied. Boundary conditions for 0 are obtained 
from (5) in accordance with whatever "horizontal" forces p are as
sumed at the boundary of the plate (Figure 2), the term "horizontal" 
forces being used to distinguish such forces from the "vertical" forces 
F. It is easily shown that this is equivalent to prescribing the values 
of 0 and its normal derivative dcj>/dn at the boundary of the plate. 

4. Buckling problems. A special class of problems is obtained from 
(3) and (4) by assuming F = 0; this we shall do from now on. In other 
words, there are assumed to be no lateral forces to cause bending. In 
addition we take always homogeneous boundary conditions for w. 
The problems that arise under these circumstances we refer to as 
buckling problems. 

For the sake of simplicity we assume also that the horizontal forces 
at the boundary are normal compressive forces which depend linearly 
on a factor X. This is equivalent to taking for 0 the boundary condi
tions 

(5)i 0 = X3>, d<j)/dn = X^, 

where <£ and >F are given functions defined at the boundary of the 
plate and X is a factor proportional to the applied pressure. Under 
these circumstances, it is clear that w = 0 is always a solution of (3), 
since w is assumed to satisfy homogeneous boundary conditions. This 
is also the unique solution for w when X is small enough (in other 
words, when the applied compressive forces are small enough). How
ever, there is always a critical value Xc of X at which the plane state 
becomes instable and the plate bends, or buckles, in the engineering 
terminology. Mathematically this means that a bifurcation of the 
solutions (cf. Figure 4) takes place for X=Xfc and solutions appear for 
which w is not identically zero. In this behavior we are reminded of 
linear eigenvalue problems, though the theory of such problems is 
naturally not applicable here. Nevertheless it can be shown that the 
lowest value Xc of X for which a bifurcation takes place (or, for which 
buckling just begins) can always be found from the linear eigenvalue 
problem which results when the right-hand side of (4) is set equal to 
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zero. This implies that the solution <£=X<£o of (4) does not depend 
upon w, and hence 

( d2<t>o d2w 

I dv2 dx2 

' d2<j)o d2W ^ d2<£o d2w d2(j>0 d2w} 

dxdy dxdy dx2 dy2) 
(6) NAAw = \h< 2 h 

together with linear homogeneous boundary conditions for w then 
presents a linear eigenvalue problem from which the lowest value of X 
for a bifurcation of the solution can be determined.1 

As in the case of the linear bending problem, a considerable litera
ture has grown up around the eigenvalue problems posed by (6) and 
many special cases have been treated. Many difficult special cases of 
practical importance were solved, for example, by Timoshenko [15] ; 
the method used by him bears strong resemblance to the Ritz method. 
The solutions of these problems have, in general, the properties one 
is accustomed to associate with linear eigenvalue problems : they pos
sess a discrete spectrum and the eigenfunctions form a complete sys
tem in terms of which "arbitrary" functions can be developed. 

The problems of existence and uniqueness of the solutions of the 
eigenvalue problems associated with (6) have been settled in the 
main. These questions have, however, been reconsidered in recent 
years by A. Weinstein [17, 18] from a new point of view. Weinstein 
has shown that certain classes of plate problems (vibration problems 
as well as buckling problems) are equivalent to an appropriately 
chosen sequence of second order membrane problems. An interesting 
by-product of Weinstein's work is that his method furnishes for the 
eigenvalues lower bounds which can be calculated numerically. 

If a plate is proportioned in such a way that it collapses when com
pressed by loads only slightly greater than that at which buckling 
just begins, the linear theory of buckling is evidently sufficient for 
practical purposes. But very thin metal plates of the type used in 
various modern structures do not fail even when the applied pressure 
is many times greater than that at which buckling begins. As a con
sequence, it is a problem of practical as well as mathematical interest 
to pursue the solutions of equations (3) and (4) into the nonlinear 
range for high values of the ratio X/Xc. In fact, it is highly desirable 
to investigate if possible the asymptotic behavior of the solutions as 
X/Xc tends to infinity. 

The most important case from the practical point of view would be 
that of the rectangular plate. It is clear that the numerical solution 

1 This approach to equation (6) is not the historical one; equation (6) was derived 
by G. H. Bryan [ l ] before the von Karman equations were known. 
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of the boundary value problem posed by equations (3) and (4) in this 
case under prescribed boundary conditions and for all values of X is 
one of very great difficulty. Some approximate solutions (for example, 
see [ l l ] ) have been given by the energy and perturbation methods, 
the latter being, roughly speaking, a solution in the form of a power 
series development with respect to X — Xc. It is difficult to estimate the 
accuracy of such solutions, but it seems certain that they are accurate 
only for rather low values of the ratio X/Xc. 

5. The buckled plate as a "boundary layer" problem. In view of 
the above remarks, it would seem highly desirable to investigate 
rigorously and in detail, even if only in a quite special case, the nature 
of the solutions of (3) and (4), with F = 0, in their dependence on X 
for an unlimited range of values of the ratio X/Xc. One would then be 
in a better position to judge the degree of accuracy to be expected in 
applying approximation methods, such as the perturbation method, 
to other cases not easily solved explicitly. K. Friedrichs and the au
thor have found and solved such a special case [2, 3, 4] . 

F I G . 3 

The special problem in question is that of the circular plate with 
constant radial pressure applied at the boundary and with radial sym
metry assumed (Figure 3). In this case all quantities depend only 
upon the distance r from the center of the plate and the von Karman 
equations become ordinary differential equations.2 Upon introduction 
of the quantities p = (l/r)(d<f>/dr) — the radial membrane stress—and 
q= — (R/r)(dw/dr) in place of 4> and w, respectively, the von Karman 

2 Solutions of the von Karman equations for the problem of the bending of the 
circular plate under vertical forces with radial symmetry assumed have been given by 
Stewart Way [16]. Way found that the von Kârmân equations in this case (in spite 
of their nonlinearity) can be solved conveniently by power series in r. 
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equations reduce to the following pair of nonlinear differential equa
tions of the second order : 

(7) V2Gq + pq = 0, 

(8) Gp = q>/2, 

in which G is the linear operator R2r~*d/dr(r*d/dr). The quantity rj2 

occurring in (7) is given by rj2=yh/R, h and R being the thickness and 
radius of the plate and y a material constant. At the center r = 0 the 
following regularity conditions resulting from the assumed symmetry 
are imposed : 

(9) dq/dr = dp/dr = 0 for r = 0. 

At the boundary r = R we assume 

(10) Rdq/dr + (1 + v)q = 0, 

(11) p = X > 0. 

Condition (10) states that the radial bending stress cr& is zero at the 
edge, while the important quantity X in (11) is the prescribed radial 
pressure at the edge. 

Just as in the general case, the only solution of the boundary value 
problem formulated in equations (7) to (11) is g = 0, p(r) =const. =X, 
if X is small enough. The lowest value Xc of X for which a different solu
tion appears can be calculated from the linear eigenvalue problem 
arising from (7) and the homogeneous boundary conditions for q, with 
p=\ in (7) as parameter to be determined. The investigation for 
X>XC requires the solution of the nonlinear boundary value problem 
as formulated above. 

The most striking feature of the numerical solutions in their de
pendence on X is that p and q (and, in fact, all quantities) appear to 
tend with increasing X to become constant in an increasingly large 
portion of the interior of the plate and to change rapidly in a narrow 
strip, or "boundary layer," near its edge. In addition, p tends to a 
negative constant in the interior of the plate; physically this means 
that the compressive stress applied at the edge of the plate (compres
sive stresses are assumed positive here) results in tension at the center 
due to buckling and consequent stretch of the plate. To substantiate 
these statements mathematically it is of course necessary to formulate 
and solve the limit problem for X tending to infinity. 

There are two distinct limit processes involved, the simpler to deal 
with being that concerning the limit state in the interior of the plate. 
One obtains the formulation of this problem from the original differ-
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ential equations (7) and (8) by observing that to allow X to tend to 
infinity for a plate of fixed radius and thickness is mathematically 
equivalent to allowing the quantity 7}9 = yh/R in (7) to tend to zero, 
X being held fixed. The result is the limit system: 

Gp = q2/2, 
(12) * H/ 

pq = 0. 

The only solution of these equations which satisfies the regularity 
conditions at r = 0 is # = 0, £=cons t . However, the quantity p cannot 
be set equal to the positive constant prescribed at the boundary, as 
the value of p in the interior of the plate seems certainly negative in 
the limit. The limit problem for the interior of the plate is thus not 
self-contained, since it fails to provide the value to be assigned to p 
in the limit. 

The limit solution for the interior of the plate can be completed 
only after the limit problem connected with the boundary layer phe
nomena has been formulated and solved. I t should be pointed out 
that the occurrence of such boundary layer phenomena is not con
fined to the special problem under consideration here.3 Phenomena of 
the same nature have been noted in various problems concerning thin 
curved shells (see, for example, [13]). Boundary layer problems occur 
also in certain nonlinear vibration problems, for example in those con
cerning what are called relaxation oscillations. All such problems have 
the same general aspect: Each is a boundary value problem associ
ated with a system of differential equations containing a parameter X. 
A limit solution is desired for a value of X which causes the order of 
the system of differential equations to degenerate. The consequence 
is that some of the original boundary conditions are lost, with the re
sult tha t the convergence as regards X becomes nonuniform at the 
boundary. 

Not all such problems are nonlinear. The problem of Kirchoff-
Kelvin-Tait discussed earlier ought to be formulated as a boundary 
layer problem. The starting point would be the thick plate problem 
and the limit problem that obtained upon allowing the thickness to 
approach zero in the differential equations. The differential equations 
would degenerate and some boundary condition would be lost at the 
edge. I t should be possible to find the nature of the limit state in the 
boundary layer, at least in some special cases. 

No general theory for boundary layer problems exists, but the gen-
3 The first and most famous boundary layer problem is the one discovered and 

treated by L. Prandtl [12] in studying the flow of a viscous fluid around an obstacle. 
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eral scheme of attack can be illustrated by means of the case of the 
buckled circular plate. The solution of the problem in this case, as in 
others, requires the introduction of a new independent variable in 
place of r which depends upon the parameter X in such a way that 
the width of the boundary layer, as measured in the new scale, does 
not shrink to zero when X tends to infinity. At the same time new de
pendent variables, replacing p and q and also depending upon X, are 
introduced in such a way that the transformed differential equations 
resulting from (7) and (8) do not degenerate when X tends to infinity. 
In short, it is necessary to introduce new variables which have the 
effect of making the convergence uniform. Limit boundary conditions 
must also be obtained. The result is in the case of the circular plate 
a new nonlinear boundary value problem which can be solved to 
yield limit values for all quantities, including those of most practical 
importance—the maximum stresses. The maxima of both bending 
and membrane stresses occur, by the way, in the boundary layer in the 
limit. Once limit values for all quantities in the boundary layer have 
been found, we are provided with the particular quantity needed to 
complete the solution of the interior limit problem—this is, quite 
naturally, the limit value of p at the inner edge of the boundary layer. 

It may be mentioned that the occurrence of the boundary layer 
phenomena in the case of the circular plate was first observed by solv
ing the original differential equations for a series of increasing values 
of X. Only afterwards were rigorous proofs of the above statements 
worked out. I should like at this point to call attention to some re
marks made by von Karman in his Gibbs Lecture relative to the need 
and value, even to those whose interest is mainly a practical one, of 
existence, uniqueness, and convergence proofs in cases where it is not 
obvious that the physical phenomena have received a correct mathe
matical formulation. 

Proofs that the limit situation in the buckled circular plate is as 
described above can be carried out through a confrontation of the 
boundary value problem with a minimum problem of the following 
type : The absolute minimum of the functional V\ (essentially the po
tential energy) given by 

(13) Vx[q] =D[q\- \*H[q] + K[q] 

is to be found, where D, H, and K are integrals, the first two quad
ratic in q and dq/dY, the third of fourth degree in dq/dY. The minimum 
of V\ is sought in the class of all continuous functions q with L2-in-
tegrable derivatives for which the integrals are finite. It is shown, by 
direct methods, that the minimum of V\ is taken on for a certain such 
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function (for each X, including X = <*> ) and that each such function 
possesses a continuous second derivative and furnishes a solution 
(though by no means all solutions) of the boundary value problem. 
The relation between the solutions of the minimum and boundary 
value problems is indicated schematically in Figure 4 which shows the 

F I G . 4 

deflection w of the center of the plate in its dependence on X. The 
heavy curve indicates the type of solution of the minimum problem. 
(That the solution —w always occurs with +w is readily seen.) How
ever, the boundary value problem has many other solutions, indi
cated by the dotted curves, in addition to w = 0, which is always a 
solution. The solutions of the boundary value problem which do not 
vanish identically and which are not solutions of the minimum prob
lem begin at values of X corresponding to the higher eigenvalues of 
the linearized buckling problem. 

6. Some unsolved problems. Quite a number of unsolved questions 
can be raised at once, even for the special case of the buckled circular 
plate. For example, it is possible that the solution of the minimum 
problem eventually becomes instable for a certain value of X and that 
a new bifurcation arises if the restriction of radial symmetry is given 
up so that the plate can buckle in waves relative to the original 
buckled state. Experiments on buckling of rectangular plates indicate 
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that such a "second buckling," or buckling of higher order, may well 
occur. Also, it would be of interest to characterize as minimum prob
lems those solutions of the boundary value problem which begin at 
the higher eigenvalues of the linearized problem. As is well known, a 
similar question is solved in the case of linear eigenvalue problems by 
imposing orthogonality conditions, or by the formulation of a mini
mum-maximum problem. One could also inquire about the limit state 
in the case of the circular plate when forces perpendicular to the plane 
of the plate are applied, with various prescribed boundary conditions. 
It is known, for example, that the boundary layer effect for the mem
brane stress does not occur if no compressive stresses arise at the 
boundary of the plate. 

From the practical point of view it would be of high interest to 
carry the solutions through for the case of the buckled rectangular 
plate. Even the asymptotic boundary layer solution alone would be 
of value. The problems with two independent variables seem, how
ever, to be of great difficulty.4 

One could go on to give a lengthy list of unsolved problems con
cerning the flexure of plates, some of which have never even been 
formulated mathematically. For instance, a theory of thin plates 
analogous to the elastica theory for thin rods ought to be worked out. 
In such a theory the assumptions of small deflections and slopes of 
the middle surface would be given up. To complete the analogy with 
the elastica theory, it should be assumed that the middle surface is 
unstretched, that is, that it remains a developable surface. In this 
case the right-hand side of the equation corresponding to (4) would 
be zero, since the right side of (4) is essentially the Gauss curvature 
of the middle surface. One would have to pay for this simplification 
by using the exact expressions for the principal curvatures of the 
middle surface. 

There remain unsolved problems of a purely mathematical charac
ter among the classical linear bending problems. The solutions of such 
problems are in general analytic functions with certain singularities, 
the character of which is known for a variety, though not all, of the 
commoner physical situations. The singularity at the corner of a 
clamped rectangular plate ought to be determined. The numerical 
solution of the previously mentioned problem of the rectangular 

4 Some years ago von Karman, Sechler, and Donnell [7] gave what can be re
garded as a rough approximation to the asymptotic solution for the rectangular plate 
based on physical assumptions which correspond in a general way to what was found 
later in the boundary layer theory for the circular plate. 
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plate resting on rigid supports but with the corners not held down 
would be greatly facilitated if the singularity at the point of detach
ment of the plate from its support could be explicitly determined. The 
best tools for attacking these problems are probably to be found in 
complex function theory. 

A theory with some claim to generality for boundary layer prob
lems would be of high interest. Such a theory should be designed to 
answer a number of questions. In the first place, one does not know a 
priori which of the boundary conditions will be lost in a specific prob
lem. This question is coupled with another: In some cases, as in that 
of the circular plate, it is the boundary layer problem which is self-
contained, while the interior limit problem can be solved completely 
only after the boundary layer problem has been solved. In the case 
of the Prandtl boundary layer problem the circumstances are re
versed; here the solution of the interior limit problem furnishes a 
quantity which is needed to complete the solution of the boundary 
layer problem. It is admittedly not easy to see how a general theory 
capable of answering such questions should be constructed ; probably 
it is necessary to begin, in the time-honored way, by collecting experi
ence through actual solution of a variety of carefully chosen special 
problems. Some physical problems likely to be of interest in this con
nection have already been mentioned—the Kirchoff-Kelvin-Tait 
problem, for example. 

The purpose of the addresses on applied mathematics, of which this 
is the first, is to stimulate interest in applied mathematics not only for 
the furtherance of practical ends but also for the advancement of 
mathematics as a whole. A striking illustration of the beneficial effects 
on pure mathematics of the study of the applications is certainly pro
vided by the topic of this address. One realizes, then, how great the 
loss to mathematics in solidity, richness, and variety would be if ap
plied mathematics generally were to be neglected. 
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