ARITHMETIC OF ORDINALS WITH APPLICATIONS TO
THE THEORY OF ORDERED ABELIAN GROUPS

PHILIP W. CARRUTH

1. Introduction.! The operations of addition and multiplication of
ordinals do not behave as well as one might desire. For example, the
commutative laws are not valid, and the distributive law is valid on
only one side. Consequently, we make definitions of a sum and prod-
uct that do not have such defects.

A binary operation, a®f, on ordinals is termed a natural sum if
a®f is a well-determined ordinal for any two ordinals, @ and 8, such
that:

(1) a®B=Ldq,
(2) (@®B)Bé=a®BDI),
3) ad0=q,

(4) 6ba>d@Bif and only if a>B,
where § is any ordinal.

Throughout this paper, o(c, B) will denote the natural sum defined
by Hessenberg.? It is the unique natural sum satisfying the condition
that w*-m—+wf-n=0(w*m, wbn), where o and 8 are any two ordinals
such that a2, and where m and » are any two positive integers.
a(a, B) shall be shown to be the “smallest” natural sum, and it shall
be shown to be the best bound for the order type of the join of two
well-ordered subsets, of respective order types o and B, of an ordered
set.

A binary operation, a ®f, on ordinals is termed a natural product if
a®p is a well-determined ordinal for any two ordinals, a and 3, such
that:

(1) a®B=B®a,
(2) («®B)®I=aQ(BRY?),
3) a®l =q,

4) a®6>BR®4 if and only if a>p,
(5) o (@®B, a® ) =a®a(B, 9),
(6) w*Quwf=w",
where 6 is any ordinal, and where ¥ =+ («, ) is a suitable ordinal.

Presented to the Society, September 5, 1941; received by the editors June 6, 1941.
The writer is indebted to Professor Reinhold Baer for his advice in the preparation of
this paper.

1 The writer presupposes familiarity with the material on ordinals found in
F. Hausdorff’s Mengenlehre.

2 G. Hessenberg, Grundbegriffe der Mengenlehre, Abhandlungen der Fries’'schen
Schule, (n. s.), 1.4, Géttingen, 1906, no. 75.
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It may be noted that the ordinal 7y above is a natural sum of «
and 8. If we impose the condition that this ordinal be equal to o(a, ),
we obtain the unique natural product defined by Hausdorff.? This
particular natural product will be denoted by 7 («, 8) throughout this
paper. We shall show that w(a, B) is the “smallest” natural product
and that it is the best bound for the order type of a certain rectangular
array of ordered elements that has “a rows” and “B columns.” An-
other application of Hausdorff’s natural product will be given in
determining a bound for the order type of the semi-group generated
by a well-ordered set of positive elements in an ordered Abelian
group.4

It is known that every ordinal @ may be represented in the form,
a=Z;’=1w°‘iai, where w>n, a1, @z, - -+, 6,20 and aZa1>o0e> - - -
>a, 20. Henceforth in this paper, when an ordinal is written in sum-
mation form, it will be assumed that the summation satisfies the
above requirements.

2. Natural sums and products of ordinals. We first prove the follow-
ing theorem.

THEOREM 1. Let 1®p be any natural sum.

I. Let T and R be well-ordered subsets, of respective order types T and
p, of an ordered set of elements. Then the set of elements in the join of R
and T, that is, R+T, is well-ordered and has order type less than or
equal to T D p.

I1. There exists a well-ordered subset R, of order type p, of an ordered
set, and a well-ordered subset T, of order type 7, of the same ordered set,
such that the ovder type of R+ T is exactly o(p, 7).

III. o(p,7)=7®p.

IV. 74+p=7®p.5

Proor orF I. I is true for =0 and for all p. Assume it to be true
for all p and for all 7 less than «. It is true for p =0 and 7 =«. Assume
it to be true for all p less than 8 and 7=a. We shall now prove I to
be true for p=F and r=a.

It is easily verified that R4 T is well-ordered for p=8 and 7=a.
Suppose the order type of R+ T is greater than 3@ «. Then R+ T has
a segment Z of order type 8@a. By our induction hypothesis, it is

3 F. Hausdorff, Mengenlehre, 3rd edition, p. 70.

* For a definition of an ordered Abelian group, see S. MacLane, The uniqueness of
the power series representation of certain fields with valuations, Annals of Mathematics,
(2), vol. 39 (1938), p. 371.

5 o(7, p) may be larger than the maximum {r—l—p, o+ } , for example, let r=p=w+1.
Thenr+4p=p+r=w2+1,and o(p, 7) =w2+2.
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seen that the order type of the subset of elements of T that are in Z
must be «, since a®B>u®B for o >u. Likewise the order type of the
subset of elements of R that are in Z must be 8. The elements of R
that are in Z form a segment of R, and the elements of T that are in Z
form a segment of 7. Hence the set R+ T is the same as the segment
Z of R+T. This gives us a contradiction, proving I.

Proor oF II. Let p=) % w*a;, and =2 r_,w*b;. Then o(p, 7) is
equal to Z;‘=1w°‘i(ai+b,~). Let R be a set of elements of order type p.
Then R is the join of sets R;, 1 =4 =<#, where R; has order type w*ia;,
and where each element in R; is smaller than every element in R;y1.

Let T be a set of elements of order type 7. Then T is the join of sets
T:, 1=<¢=wn, where T; has order type w*ib;, and where each element
in T; is smaller than every element in T;.

By letting each element in T'; be greater than every element in R;
and smaller than every element in R;y1, we form a set R+ T of order
type o (p, 7).

III is an immediate consequence of I and II, and IV is an immedi-
ate consequence of I.

An ordered set of elements, 4 = {aaﬁ}, 0=a<r, 0=B<u, where 7
and p are any two ordinals, is an ordered 7, u-block if Gop <Gay, Gga <ya
for 3 <%. An ordered 7, u-block 4 is said to be less than an ordered p,
N-block B, that is, 4 <B, if each element in 4 is considered to be less
than every element in B. Two ordered 7, u-blocks, 4 = {aaﬁ} and
B= {bag}, are congruent if the following two conditions are equiva-
lent: (1) aas <apn, (2) bag<bpn.

THEOREM 2. Let 7 Qu be any natural product.

I. Let A= {aag} be an ordered T, u-block. Then A is well-ordered and
has order type less than or equal to T Qu.

I1. There exists an ordered T, u-block of order type exactly w(r, u).

1. 7w (r, p) E7Qu.

IV. 7u=7Qu.b

Proor or I. Suppose that 4 is not well-ordered. Then there exists a
subset B of 4, @ap,>0ays,> - - -, of order type w*. Since the a; are
well-ordered, we may choose a chain C, @4, >@s,9,> - - -, of order
type w*, from the set B such that 6;<8,< - - - . Since the v, are well-
ordered, there exists a v;, say i, such that vy, =v:. But then a5y, = @3,y
which is a contradiction.

The set 4 has order type less than or equal to T®u for r=1 and
all u. Assume this to be true for all u and for all 7 less than 6. It is

8 w(p, 7) may be larger than the maximum {rp, pr}, for example, let r=p=w-+1.
Then rp=pr=w?+w+1, and =(p, 7) =w?+w2+1.
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true for u=1 and 7= 4. Assume it to be true for all u less than vy and
7= 0. We shall now prove 4 has order type less than or equal to T®u
for u=v and 7=34.

Let 6 =w*mi+ - - - +w*m, and y=whin4 - - - +wPowm,.

Case I. my>1or r>1.

Let p=w*m;+ + - - +w*(m,—1), where m,—1=0. By hypothesis,
6>p>0and 6 >wr.

Let T be the set {aag} , where 0 =a<p and 0=<8<%. Let T be the
set {a,,p}, where p=a<d and 0=5<7. Then 4 is the set T1+T,. By
our induction hypotheses, the order type of T is less than or equal
to p®+. Likewise, the order type of 7% is less than or equal to w* Q.
Theorem 1 implies that the order type of 4 is less than or equal to
c(p®7, w*r@y)=r®c(p, w*) =Y Q4.

Because of the symmetry, 4 has order type less than or equal to
7Quforu=yand r=9, if na>1o0r s>1.

Case I1. my=r=mn1=s=1, that is, 6 =wx and y=wh1.

Suppose that the order type of 4 is greater than 6 ®+y. Then A has
a segment Z of order type 6®v. Let A =Z+4 Y. Let a). be the smallest
element in Y. Then § >\ and v >e.

Let T be the set {@qs}, where 0Sa<dand 0<B<e. Let T: be the
set {@as}, where 0Sa <\ and where e<f<y. Let W=T1+T5.

@oo, Qo1y, * * 5 + (oey @oet1, * * °
alo,all’-..’..’- ,...

y s Tty et st y e
................
y A a)\e’ . y Tt
.

T T y Tt

The set at the left of the dotted line is T4, and that in the upper right-
hand corner is T%.

W certainly contains Z. Therefore, according to our supposition,
the order type of W is greater than or equal to é ®7.

By our induction hypothesis, the order type of T4 is less than or
equal to d® ¢, and the order type of T is less than or equal to ¥y ®A\.
Theorem 1 implies that the order type of W is less than or equal to
d(8® ¢, v®N). According to (6) of the definition of a natural product,
8 ®7v =w", where 7 is some ordinal. Likewise, by (4) of this definition,
it is seen that §® e <w" and that y @\ <w?". The definition of o(a, B)
implies that ¢(d®¢€, vy®N) <w"=§®y. This then isa contradiction
which completes the proof of I.

Prooror II. Let 1 =weig1+ - + - +w*a,and p=whtby+ - - - +whb,.
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Then (7, u) =2, jw @ BDab; =D 4wkc, where cp =2 *ab;, where D
is over the finite number of pairs such that o(as, 3;) =".

Any ordered 7, u-block, 4 = {aaﬁ}, may be broken up into ordered
w¥ia;, wib;-blocks, D(i, j) = {a.s}, where wua+ - - - +w*i-1a; 1S«
<waa+ - - - Fwae;, and wPhi4 - - - Fwbfivh; B <wPbi+ - - -
-i—wﬂfb,-.

oPib, P, e oPsb,
Wi D(, 1) D, 2) ce D(1, s)
w®ay D(2,1) D(2,2) cee D(2,s)

A =
wra, D(r, 1) D(r, 2) e D(r, s)

Suppose that we could order our blocks D(4, ) in such a way that
each D(z, j) would have order type exactly w(w®*ia;, wfib;) =w?(*i:fdab;.
By then letting D(4, j) be less than D(k, m) if o(ai, B;) >0 (o, Bm) O
if o(a, B;) =0 (aw, Bm) and 7>k, we would have an ordered 7, u-block
of order type exactly 7 (7, u). Thus it is seen that it suffices to prove 11
for the special case that 1 =w2s and u=w?b.

Hence we now assume that 7=w® and that pu=wfb. Let
a=wnfi4+ - -+ Fwrf, and B=wdd:+ - - - +wdd,. We first assume
that t=0. In this case =0 and 7 =a. If we let ax,<ag, for A <0, it is
seen that an ordered 7, u-block is formed of order type ur=m(u, 7).
Assume that II is true for all integers ¢ less than £ and for all integers
9. We shall now prove II to be true when ¢=%.

we = ww71/x+ ceetoYp  fr—. ww"kfk.

Let

¢ = w"”y it ‘+¢07k_1f)¢__1_

Then

W = ¢"""kak = 7r(¢v kafk)y

wh = ww61d1+. Cetided . ww"e+1de+1+' < twdvdy
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where 0,=7v%> 8041, 0= e=<v. Let
\ = wwﬁdﬁ...ﬂfede, = wietdert - v,
Ife=0,letA=1.If e=v, let n=1.
r(wea, w$b) = w(¢-w* *a, Anb)
= m(n($, 0 M%), w(\, n))ab
= 7(m(g, N), m(w*", n))ab
= m(m(¢, N), @*"*kn)ab
= (¢, )\)w“’v"f’onab.

DIAGRAM
Fo
N A7
Dy, |¢
EN\l p, | E
Go Gy
A =
w® F,

By our induction hypothesis, there exists an ordered ¢, A-block D,
of order type w(¢, \). We may construct congruent ordered ¢, \-
blocks D,, 0Sa<w*™, as in the Diagram, such that D,<D; for
a<p.

Let E, be the block of all the D,. E, is an ordered w?, A-block. The
order type of Eqis 7(¢, ) -w*"#% We may now construct congruent
ordered w®, N-blocks Ez, 0=<(3<m, as in the Diagram, such that
Ez<E;, for <.
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Let F, be the block of all the Eg. Then Fy is an ordered w?, An-block.
The order type of Fyis

r(d” >‘) AL .

Now we construct congruent ordered w?, Ay-blocks F;, 0 =<7 <a, such
that F; <Fj, for 'I:<]

Let Gy be the block of all the F;. Then G, is an ordered w®a, \y-
block. The order type of Gy is w(¢p, Nw*"%-na. We construct con-
gruent ordered w@a, Ap-blocks G;, 0=57<b, as in the Diagram, such
that G; <Gy, for <.

Let 4 be the block of all the G;. 4 is an ordered w®a, wfb-block. The
order type of 4 is

(¢, Nw?™k-5-ab = w(wa, wfb) = w(r, u).

III is an immediate consequence of I and II, and IV is an immedi-
ate consequence of I.

3. Well-ordered subsets of ordered Abelian groups. We prove the
following theorem.

THEOREM 3. Let G be an ordered Abelian group. Let T be a well-
ordered (according to size) set of non-negative elements in G, containing 0,
of order type B=1-+n, where t is a limit ordinal or 0, and n is an integer
greater than or equal to 0. Let M be the set of all finite sums of elements
in T. Then:

1. M is well-ordered.

11. M has order type less than or equal to w(w?P, 77).7

Proor oF 1.

Case 1. There exists an integer N such that each element in M is
the sum of N elementsin T

Let M; be the set of sums of at most ¢ elements in 7. Then M; is
well-ordered if 1=1. Assume that Mj_; is well-ordered. Suppose that
M. is not well-ordered. Then there exists a chain of elements in M,
a1>ay> -+ -, of order type w*. Let a;=c;+d;, where ¢; is in M;_y,
and d; is in Mi=T. Then ci+di>c;+dy> -+ - . The ¢; are well-
ordered. Likewise the d; are well-ordered. Hence this chain can not
exist, that is, M}, is well-ordered.

Case 2. There exists no integer IV such that each element in M is
the sum of N elements in T

Let T be the set {#.}, where t, <fs for <. Let D, be the subgroup
of G that is generated by ¢, and all g in G such that 0 =<g<{,. Then

7 If B is an integer, then a better bound of the order type of M is w(wf1, 77) =of1,
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0=Dy=D1£D,=< - - .. We pick out the well-ordered set R of all the
different Do,. R={Ro, Ri, -+ }; 0=Ry<R;< - - - =G.

Let M(a) be the set of all elements in M such that each may be
expressed as a finite sum of elements in 7', all of which are in R,.

M(0) consists of the single element 0 and so is well-ordered. Assume
that M(«) is well-ordered for all @ <+. Suppose that M (vy) is not well-
ordered. Then there exists a chain in M(y), a1>a2> - - -, of order
type w*.

(a) Only a finite number of the a; are in M (y) but not in an M («),
a<7y.

In this case, we may throw out this finite number of a; and then we
have a chain, ¢1>¢.> -+ - -, of order type w*, where each ¢; is in an
M(a), a<7. Let ¢; be in M(p), p<7y. By our induction hypothesis,
there exists a ¢;, say ¢k, not in M(p). But then ¢;>¢i, a contradiction.

(b) An infinite number of the @; are in M (y) but not in any M(x),
a<7y.

In this case, we may choose a chain, ¢c;>c;> - - -, of order type w*,
where each ¢; is in M (y) but not in any M(a), a<7.

Let ¢;=f;+g:, where fiis in an M(«), a <7, and g; is a sum of terms
in T, each of which is in R, but not in an R,, a<7y. We saw in (a)
that the f; must be well-ordered. Hence the g; must not be well-
ordered, that is, we can choose a chain from the g;: go,>ga,> * -+,
of order type w*. Each g,; is a sum of terms in T, all of which are
in R, but not in any R,, a<%.

Let ¢ be the smallest positive element in T that is in R, but not in
an R,, a<7. There exists an integer 7 such that =t is greater than go,.
According to Case 1, there must exist a g,;, say ga;, that is the sum of
more than # positive elements in 7. But then Za; >Nt >gq,;, a contra-
diction.

Before we proceed, we shall prove this lemma.

LemMA 1. Let G be an ordered Abelian group. Let T be a subset of
non-negative elements in G, containing 0, that is well-ordered (accord-
ing to size) of order type 3. Let Hy be the set {Z;,lami}, where the n;
are non-negative integers such that ZZ,lnigk, the a; are in T, and k
is any positive integer. Then H, is well-ordered and has order type less

than or equal to ¢r(B) = mra(mr—2( - - - (m1(B, B), B), - - - ), B), where the
subscripts merely denote the number of m's.

Proor. H} is well-ordered, by Case 1 of Theorem 3. The order type
of H, is . Assume H;_1 has order type less than or equal to ¢s_1(8).
Let the elements in Hj,_; be by, b1, - - -, where b, <b; for a <.
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The set R= {b,+as}, all b, in Hj_1, and all elements a; in T, cer-
tainly contains Hj. Theorem 2 implies that the order type of Hj is
less than or equal to w(¢n—1(8), B) =¢n(B).

We now continue with the proof of Theorem 3.

Proor or I1. Let M= be the set of all elements in M that are sums of
elements ¢,, 0=y <a, in T. Note that Mf= M. Let a =7+ ., where
T4 1s a limit ordinal or 0, and #, is an integer greater than or equal to 0.

M* has order type 1. Assume that M¢, <38, has order type less
than or equal to w(w®, 72%).

Case 1. n;>0.

M?*1 has order type less than or equal to m(w!, 73%). M?® is cer-
tainly contained in the set {aa+nt5_1}, for all elements a, in M®1,
and 0=#< «. Theorem 2 implies that the order type of M? is less
than or equal to 7 (7 (w®1, 73%), w) = w(w?, 73°).

Case 2. n;=0, that is, 75=2.

Suppose that M? has order type greater than w(w? &°%). Then
M?¥=S+R, where S is the segment of M? of order type w(w?, 8°).

Let b=tomi+ - -+ +tam,, c1<ae< - - - <a;<9, be the smallest
element in R, where the m; are positive integers. Let as =pu-+m, where
u is a limit ordinal or zero and m is an integer greater than or equal
to 0. Let # be an integer such that nfa, is greater than b.

Let H, be the set of all elements D _i_fs;7; in M?, such that r <,
> i_mi<n, and each ;< 8. By Lemma 1, it is seen that the order
type of H, is less than or equal t0 ¢,(8) =ms_1(mna( - -+ (m1(8, ), 0)

cen), 8.

Let d=wle+ .-+ +wle, and & =wrrv1+ - +wrw,. Then
0 <w®1tD and ¢,(8) <w® rvrtbn,

Let x be any element in S. Then x=H,714 - - - +h o thuaron
+- - Fhrewhere M<- - - <N <o SN < - - <A<O. Let f=Hn
4+ Fhroand g=4h, ., 7o+ - - +h e Then fisin M. Since x is less
than b, it follows that g is less than b. Hence 711+ + + - 47.=n. And
s0 g is in H,. Therefore the set S is contained in the set {ba+tc,},
for all elements b, in H,, and for all elements ¢, in M<. Theorem 2
and our induction hypothesis imply that .S has order type less than or
equal to w(mw(wee, u*), w1t ) < (7w (W, §), ovirtr).

1) w(w(w?, 8%, §717+7) = r(w?, w(6#, 67)), where j = vin + n is an integer,

(8, ) S ((w't(es+1))*, (wdi(es+1))7). §:>0, since & is a limit or-
dinal. Hence (w’t(e;+1))* =w?™*, since u is a limit ordinal. (w?(e1+1))7
=w817‘(31+1)’

(2) w(8#, 87) = m(wi, whti(ey + 1)) = @ OWHD (¢ 4 1).
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hiw=wt1 and 6ij=wrlvjt w4 - - - o, <wfi(vij41);
0'(51#, 51]) < 0’(61#,(.0”1(1)1]. + 1)) < 61[.1. + whtl = 61;/. + 610).

By (2), (8, §7) <wdwtdie = (dr)(te) < gute < §9,
Hence by (1), the order type of .S is less than 7 (w?, 6°). Thisis a con-
tradiction since S was the segment of M? of order type w(w? 8°%).

UNIVERSITY OF ILLINOIS

A CHARACTERIZATION OF ABSOLUTE
NEIGHBORHOOD RETRACTS

RALPH H. FOX

By an absolute neighborhood retract (ANR) I mean a separable
metrizable space which is a neighborhood retract of every separable
metrizable space which contains it and in which it is closed. This
generalization of Borsuk's original definition! was given by Kuratow-
ski? for the purpose of enlarging the class of absolute neighborhood
retracts to include certain spaces which are not compact. The space
originally designated by Borsuk as absolute neighborhood retracts (or
R-sets) will now be referred to as compact absolute neighborhood re-
tracts. Many of the properties of compact ANR-sets hold equally for
the more general ANR-sets.?

The Hilbert parallelotope Q, that is, the product of the closed unit
interval [0, 1] with itself a countable number of times is a “universal”
compact ANR in the sense that* every compact ANR is homeo-
morphic to a neighborhood retract of Q. The classical theory of
Borsuk makes good use of the imbedding of compact ANR-sets in Q.
The problem solved here is that of finding a “universal” ANR.

Received by the editors June 28, 1941.

! Fundamenta Mathematicae, vol. 19 (1932), pp. 220-242.

2 Fundamenta Mathematicae, vol. 24 (1935), p. 270, Footnote 1.

3 Ibid., pp. 272, 276, and 277, and Footnote 1, p. 279 and Footnote 3. Note that
Theorem 12, Fundamenta Mathematicae, vol. 19 (1932), p. 229, is not true for gen-
eral ANR-sets. In fact let 4 =2 .S, where S, is the plane circle of radius 2~» and center
(327, 0); let f(x, ¥) = (x, | ¥|) for (x, ») E4 and let

(xr lyl)y fOI' (xy y) E A - Sn,
fulx, y) =
(x,y), for (x,y) € S

Then f.—f in 44; f can be extended to the half-plane {x>0}, but none of the maps fx
can. 4 isan ANR-set. Theorem 16, Fundamenta Mathematicae, vol. 19 (1932), p. 230,
is also false for general ANR-sets.

¢ Fundamenta Mathematicae, vol. 19 (1932), p. 223.



