CLASSES OF MAXIMUM NUMBERS ASSOCIATED WITH TWO SYMMETRIC EQUATIONS

H. A. SIMMONS

1. Introduction. Let $\sum_{i, j}(1 / x)$ stand for the elementary symmetric function of the j th order of the i reciprocals $\left(1 / x_{p}\right)(p=1,2, \cdots, i>0)$ with

$$
\begin{aligned}
\sum_{i, j}(1 / x) & \equiv 0 \quad \text { when } \quad i<j \text { or } j<0 \\
& \equiv 1 \quad \text { when } \quad j=0
\end{aligned}
$$

($\sum_{i, j}(x)$ having a similar meaning for the x_{p} themselves).
Here we extend the work of papers I, ${ }^{1} I I,{ }^{2} I I I^{3}$ by obtaining relative to equations (1) and (1.1) below results analogous to those in I, II, III

$$
\begin{align*}
\sum_{n, n-1}(1 / x)+ & \sum_{i=1}^{m} a_{i}[\pi(x)]^{-i}=b / a \tag{1}\\
& a=(c+1) b-1, \pi(x)=x_{1} x_{2} \cdots x_{n}
\end{align*}
$$

$$
\begin{equation*}
\sum_{n, n-2}(1 / x)+\lambda \sum_{n, n-1}(1 / x)+\mu \sum_{n, n}(1 / x)=b / a ; \tag{1.1}
\end{equation*}
$$

in (1), b, c, and m are arbitrary positive integers, $n>1$, and the a_{i} are any non-negative real numbers; in (1.1), a and b are as in (1), $n>2, \lambda$ is a non-negative integer, and μ is a positive integer.

We have not seen previous mention of (1); the case of (1.1) in which $\mu=0$ was treated in II and that in which $\lambda=\mu=1$ was treated in III. Our procedure for (1) does not suffice for the equation that is obtained by adding to the left member of (1.1) the terms

$$
\sum_{i=2}^{m} a_{i}[\pi(x)]^{-i} .
$$

The following definitions and notation from I will be frequently

[^0]used here: $x_{1} \ldots p, 1 \leqq p \leqq n$, stands for the set ($x_{1}, x_{2}, \cdots, x_{p}$); $P(x) \equiv P\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ stands for a polynomial, not a constant, which is symmetric in the $x_{i}(i=1,2, \cdots, n)$ and has at least one positive, and no negative, coefficient; the Kellogg solution of equation (e), where e stands for (1) or (1.1), is the solution that is obtained by minimizing the variables $x_{1}, x_{2}, \cdots, x_{n-1}$ in this order, one at a time, in (e) among positive integers; an E-solution of (e) is any solution of it in which $x_{1} \leqq x_{2} \leqq \cdots \leqq x_{n}$ while $x_{1}, x_{2}, \cdots, x_{n}$ are positive integers. When any further definition or notation from I, II, or III is used here, a suitable reference to the appropriate article will be given.

We can now state accurately our purpose here. It is to prove that the Kellogg solution w of equation (e) has the following two properties, which were called remarkable properties in III: (i) It contains the largest number that exists in any E-solution of (e) and no other E-solution of (e) contains this number. (ii) If X, with $X \neq w$, is an E-solution of (e), then $P(X)<P(w)$.

The discussion from $\S 2$ to the end of this paper is divided into two parts as follows: Part 1 treats (1), §§2 to 6 (inclusive); Part 2, (1.1), §§7 to 12.

This paper involves innovations of notation and procedure of I, II, III. The terms set σ and set τ, which were important in I, II, III, are not used here; they are not needed because of our use of a new term that is very convenient for present purposes, namely s-set (cf. §4). This change is accompanied by new procedure for both (1) and (1.1): in Part 1, we use a new lemma, namely Lemma 4.1 ; in Part 2, we introduce an upper bound $R(X)$ (cf. §8) for the maximum number that we seek to identify and we show that $R(X)$ is uniquely maximized, with respect to values that $R(x)$ can assume on E-solutions X of (1.1), by the Kellogg solution of (1.1). In so far as we know, our reasoning about $R(X)$ in $\S 11$ affords the first strong resemblance of our procedure (for identifying maximum numbers) to that which Curtiss ${ }^{5}$ used in solving Kellogg's problem. ${ }^{6}$

Part 1. The remarkable properties of the Kellogg SOLUTION OF (1)

2. The Kellogg solution of (1). This solution is $x=w$ where [$\mathrm{I},(23)$]

$$
\begin{equation*}
w_{p}=1 \quad(p=1,2, \cdots, n-2), \quad w_{n-1}=c+1 \tag{2}
\end{equation*}
$$

[^1]with w_{n} defined to be the unique positive solution x_{n} of the equation that is obtained by substituting in (1) for each $x_{p}(p=1,2, \cdots, n-1)$ its value w_{p} from (2).

If $n=2$, only the last equation in (2) is to be retained.
3. Our transformation. In considering an E-solution $X \neq w$ of (1), we classify and transform elements as we did in $\S \S 15,17$ of I. Thus we define our transformation of $X\left(X_{1} \ldots n\right)$ into a new set X^{\prime} by $\left(t_{1}\right)$ or $\left(t_{2}\right)[\mathrm{I},(33)$ and (52)]:

$$
\begin{align*}
& \left(t_{1}\right): X_{p}^{\prime}=X_{p}\left(p \neq q_{1,1} q ; p \leqq n\right), X_{q_{1}}^{\prime}=w_{q_{1}}, Q\left(1 / X^{\prime}\right)=Q(1 / X) \\
& \left(t_{2}\right): X_{p}^{\prime}=X_{p}\left(p \neq q_{1,1} q ; p \leqq n\right), X_{1^{q}}=w_{1 q}, Q\left(1 / X^{\prime}\right)=Q(1 / X) \tag{3}
\end{align*}
$$

according as $\left(t_{1}\right)$ requires $X_{1 q}^{\prime}$ to be not greater than $w_{1 q}$ or greater than $w_{1 q}$, respectively, where $Q(1 / X)$ is the case $x=X$ of the left member of (1); if (t_{1}) defines $X_{1 q}^{\prime}$ to be equal to $w_{1 q},\left(t_{1}\right)$ and (t_{2}) are the same transformation.

If $X^{\prime} \neq w$, our transformation from X^{\prime} to $X^{\prime \prime}$ is obtained from (3) by replacing in (3) X, X^{\prime}, q by $X^{\prime}, X^{\prime \prime}, q^{\prime}$, respectively, where $X_{q_{1}}^{\prime}\left(X_{1 q^{\prime}}^{\prime}\right)$ is of class $A^{\prime}\left(B^{\prime}\right)$, and the new transformation is regarded as a transformation (3). Thus we avoid giving here an analogue of (52) of I.

Replacement of (1) by (1.1) in this section gives our transformation for $\S \S 11,12$; it will be called (3a).
4. Important lemmas; s-set. In the sequel, we use Lemma 4 and Lemma 4.1 below. Lemma 4.1 depends on Lemma 4, which is essentially Lemma 1a of I.

Lemma 4. Let $Q(1 / x)$ stand for a symmetric polynomial in the n reciprocals $\left(1 / x_{p}\right)(p=1,2, \cdots, n>1)$ which is not a mere constant and contains at least one positive, and no negative, coefficient; with i and j equal to distinct positive integers each less than or equal to n, let x_{i}, x_{j}, α, β be positive numbers with $\alpha<x_{i} \leqq x_{j}$; and suppose that the expression that is obtained by replacing in $Q(1 / x)$ the numbers x_{i}, x_{j} by $\left(x_{i}-\alpha\right)$, $\left(x_{j}+\beta\right)$, respectively, equals $Q(1 / x)$, then

$$
\begin{equation*}
x_{i} x_{j} \leqq\left(x_{i}-\alpha\right)\left(x_{j}+\beta\right), \quad x_{i}^{h}+x_{j}^{h}<\left(x_{i}-\alpha\right)^{h}+\left(x_{j}+\beta\right)^{h}, \tag{4}
\end{equation*}
$$

where h is a positive integer. Furthermore, the equality sign holds in (4) if, and only if, $Q(1 / x)$ is a polynomial in $[\pi(x)]^{-1}$.

In the proof of Lemma 4.1 and in $\S \S 6,12$, we use the following definition.

Definition of s-set. If in a set $X^{(\alpha)} \neq w$ every element of class $B^{(\alpha)}$ [I, p. 898] is at least as large as every element of class $A^{(\alpha)}$, we call $X^{(\alpha)}$ an s-set (relative to w), s meaning satisfactory in the sense that $X^{(\alpha)}$ can be transformed into w by one or more transformations of type (3) every one of which accords with (4).

Lemma 4.1. Let k be an integer greater than or equal to $1 ;$ let $W \equiv W_{1} \ldots v$ $(v>1)$ be the Kellogg solution of the equation $\left(x_{1} x_{2} \cdots x_{v}\right)^{-1}=k^{-1}$; and let $X \equiv X_{1} \ldots{ }_{v}$ be a set of v positive integers with $X_{1} \leqq X_{2} \leqq \cdots \leqq X_{v}$ satisfying the relation

$$
\begin{equation*}
\left(x_{1} x_{2} \cdots x_{v}\right)^{-1} \leqq k^{-1} \tag{4.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{v, s}(1 / X) \leqq \sum_{v, s}(1 / W), \quad 1 \leqq s<v, 7 \tag{4.2}
\end{equation*}
$$

with < holding in (4.2) except when $X=W$.
Proof. We first consider the case where

$$
\begin{equation*}
X_{1} X_{2} \cdots X_{v}=k \tag{4.3}
\end{equation*}
$$

Then $X_{1} \ldots{ }_{v}$ is an s-set (relative to W). Therefore $P(X) \leqq P(W)$, [I, Lemma 3], the equality sign holding in this relation if, and only if, $X=W$ or $P(X)$ is a polynomial in the product of all of the v variables $X_{1}, X_{2}, \cdots, X_{v}$. In particular, then, when $P(x) \equiv \sum_{v, r}(x)$, we have

$$
\begin{equation*}
\sum_{v, r}(X) \leqq \sum_{v, r}(W), \quad 1 \leqq r<v, \tag{4.4}
\end{equation*}
$$

the equality sign holding in (4.4) if, and only if, $X=W$ since $r<v$. But, using (4.3), we find

$$
\begin{equation*}
\sum_{v, r}(1 / X)=\frac{\sum_{v, v-r}(X)}{X_{1} X_{2} \cdots X_{v}}=\frac{\sum_{v, v-r}(X)}{k}, \quad \sum_{v, r}(1 / W)=\frac{\sum_{v, v-r}(W)}{k} \tag{4.5}
\end{equation*}
$$

while, by (4.4),

$$
\begin{equation*}
\sum_{v, v-r}(X) \leqq \sum_{v, v-r}(W), \quad 1 \leqq v-r<v \tag{4.6}
\end{equation*}
$$

From (4.5) and (4.6), it follows that in the present case (4.2) holds.
Suppose now that $<$ holds in the case $x=X$ of (4.1), say

$$
\begin{equation*}
\left(X_{1} X_{2} \cdots X_{v}\right)^{-1}=\left(k^{\prime}\right)^{-1} \tag{4.7}
\end{equation*}
$$

[^2]where k^{\prime} is an integer greater than k. By considering the Kellogg solution of (4.7), one can prove that (4.2) still holds: indeed if the Kellogg solution of (4.7) is U, one finds readily that
$$
\sum_{v, s}(1 / X) \leqq \sum_{v, s}(1 / U)<\sum_{v, s}(1 / W), \quad 1 \leqq s-v .
$$
5. Proof of Property (i) for the w of (1). We substitute any E-solution $X \neq w$ of (1) for x in (1) and employ the following equivalent of the resulting equation $\left(\sum_{i, j}\right.$ standing for $\sum_{i, j}(1 / X)$ here as in the sequel)
\[

$$
\begin{equation*}
\sum_{n-1, n-1}+X_{n}^{-1}\left(\sum_{n-1, n-2}+a_{1} \sum_{n-1, n-1}\right)+\sum_{i=2}^{m} a_{i} X_{n}^{-i}\left(\sum_{n-1, n-1}\right)^{i}=b / a \tag{5}
\end{equation*}
$$

\]

In order to establish Property (i), it suffices to prove that w has Property (i) when $n=2$ and to prove that the following relations hold

$$
\begin{equation*}
\sum_{n-1, n-1} \leqq \sum_{n-1, n-1}(1 / w), \quad \sum_{n-1, n-2}<\sum_{n-1, n-2}(1 / w), \quad n>2 . \tag{5.1}
\end{equation*}
$$

When $n=2$, equation (1) reduces to

$$
\begin{equation*}
X_{1}^{-1}+X_{2}^{-1}\left(1+a_{1} X_{1}^{-1}\right)+\sum_{i=2}^{m}\left(a_{i} X_{1}^{-i}\right) X_{2}^{-i}=b a^{-1} \tag{5.2}
\end{equation*}
$$

In this case, $X \neq w$ implies that $X_{1}<w_{1}$. This fact and (5.2) imply that $X_{2}<w_{2}$ [I, Lemma 2].

When $n>2$, the first relation of (5.1) is true by the definition of Kellogg solution since (cf. (2))

$$
\sum_{n-1, n-1} \leqq(c+1)^{-1}=\sum_{n-1, n-1}(1 / w)
$$

and since $X \neq w$, the second relation of (5.1) follows from Lemma 4.1 (cf. the case of (4.2) in which $X \neq w$ and (v, $s)=(n-1, n-2)$ with $n>2$).
6. Proof that the w of (1) has Property (ii). Let $X \neq w$ be an E-solution of (1). The discussion of the case $n=2$ in $\S 5$ shows that in this case X is an s-set (so that $P(X)<P(w)$). Suppose $n>2$. Then, by $\S 5$, $X_{n}<w_{n}$, and by (2) every classified element of $X_{1} \ldots(n-2)$ is of class A. Therefore, whether X_{n-1} is of class A, class B, or unclassified ($=w_{n-1}$), X is an s-set.

Part 2. The remarkable properties of the Kellogg SOLUTION OF (1.1)
7. The Kellogg solution of (1.1). This solution is $x=w$ where [I, (23)]

$$
\begin{align*}
w_{p} & =1, \quad p=1,2, \cdots, n-3, \\
w_{n-2} & =c+1, \quad w_{n-1}=a\left[\sum_{n-2,1}(w)+\lambda\right], \\
w_{n} & =a\left[\sum_{n-1,2}(w)+\lambda \sum_{n-1,1}(w)+\mu\right] . \tag{7}
\end{align*}
$$

If $n=3$, the first set of equations in (7) is, of course, to be omitted.
8. An upper bound for X_{n}. In the sequel X stands for an E-solution of (1.1), arbitrary except as we specify.

If we substitute X for x in (1.1) and solve the resulting equation for X_{n}, we find after simple algebraic manipulations that

$$
\begin{align*}
X_{n}=a & {\left[\sum_{n-1,2}(X)+\lambda \sum_{n-1,1}(X)+\mu\right] } \\
& \cdot\left[b X_{1} X_{2} \cdots X_{n-1}-a\left(\sum_{n-1,1}(X)+\lambda\right)\right]^{-1} \tag{8}
\end{align*}
$$

Since the $X_{p}(p=1,2, \cdots, n-1)$ are positive integers, the second factor in the right member of (8) is the reciprocal of a positive integer. Therefore,

$$
\begin{equation*}
X_{n} \leqq a\left[\sum_{n-1,2}(X)+\lambda \sum_{n-1,1}(X)+\mu\right] \tag{8.1}
\end{equation*}
$$

9. An inequality for X_{n-1} when X_{n} is the maximum number. In the sequel, the statement that $X \neq w$ and X_{n} is the maximum number that we seek to identify (so that $X_{n} \geqq w_{n}$) will be referred to as hypothesis H, or merely as H. We use H henceforth until a contradiction of it is reached in $\S 11$.

Under hypothesis H, we now desire to prove that

$$
\begin{equation*}
X_{n-1} \leqq w_{n-1} \tag{9}
\end{equation*}
$$

Suppose that this is not true, so that (with H holding)

$$
\begin{equation*}
X_{n-1}>w_{n-1} . \tag{9.1}
\end{equation*}
$$

We presently contradict (9.1). The case $x=X$ of (1.1) is equivalent to

$$
\begin{align*}
& \sum_{n-2, n-2}+\left(1 / X_{n-1}\right)\left(\sum_{n-2, n-3}+\lambda \sum_{n-2, n-2}\right) \\
&+\left(1 / X_{n}\right)\left(\sum_{n-1, n-3}+\lambda \sum_{n-1, n-2}+\mu \sum_{n-1, n-1}\right)=b / a \tag{9.2}\\
& a=(c+1) b-1,
\end{align*}
$$

with $n>2$. To reach the contradiction, we first establish the following relations

$$
\begin{array}{cc}
\sum_{n-2, n-2} \leqq \sum_{n-2, n-2}(1 / w), & n>2, \\
\sum_{n-2, n-3}+\lambda \sum_{n-2, n-2} \leqq \sum_{n-2, n-3}(1 / w)+\lambda \sum_{n-2, n-2}(1 / w), & n>2 . \tag{9.4}
\end{array}
$$

Since X is an E-solution not equal to w of (1.1) and $n>2, X_{1} X_{2} \cdots X_{n-2}$ $\geqq c+1=w_{1} w_{2} \cdots w_{n-2}$; therefore, (9.3) is true. Consequently, to prove (9.4), it suffices to show that

$$
\begin{equation*}
\sum_{n-2, n-3} \leqq \sum_{n-2, n-3}(1 / w), \quad n>2 \tag{9.5}
\end{equation*}
$$

When $n=3$, (9.5) states that $1=1$; when $n>3$, (9.5) is a case of Lemma 4.1 in which $X \neq W$ and $(v, s)=(n-2, n-3)$ with $n-3 \geqq 1$; therefore, (9.5) is true.

Next, using (9.1), (9.3), and (9.4), we find that the sum of the terms in the first line of (9.2) is less than U, where

$$
U \equiv \sum_{n-2, n-2}(1 / w)+\left(1 / w_{n-1}\right)\left[\sum_{n-2, n-3}(1 / w)+\lambda \sum_{n-2, n-2}(1 / w)\right]
$$

Indeed, if in the first line of (9.2) we should replace X_{n-1} by $X_{n-1}-1$, the resulting expression would not exceed U. Consequently, there exists for (1.1) an E-solution Y in which
(9.6) $Y_{p}=X_{p}(p=1,2, \cdots, n-2), \quad Y_{n-1}=X_{n-1}-1, \quad Y_{n}>X_{n}$,
and the inequality in (9.6) contradicts H. Hence, under hypothesis H, (9.1) is false.
10. On the classification of the elements of $X_{1} \ldots(n-1)$ when H holds. For use in $\S 11$, the following statement, S, will presently be proved: In $X_{1} \ldots(n-1)$ every element of class B is at least as large as every element of class A.

To avoid vacuous language in the proof of $S,{ }^{8}$ we consider separately the cases $n=3$ and $n>3$.

Case $n=3$. Here $X_{1 \cdots(n-1)}=\left(X_{1}, X_{2}\right)$, and either $X_{p} \geqq w_{p}(p=1,2)$ or $X_{1}>w_{1}, X_{2}<w_{2}$; in both cases S is true.

Case $n>3$. Here, by (7), any classified element of $X_{1} \ldots(n-3)$ is of class $A ; X_{n-2}$ is of class A, class B, or unclassified $\left(=w_{n-1}\right)$; and by (9) X_{n-1} is either unclassified or of class B. Therefore S is true.

[^3]11. Proof of Property (i) for the w of (1.1). If $X_{1} \ldots(n-1)$ contains no element of class $B, X \neq w$ implies that $X_{n}<w_{n}$, which contradicts H.

Suppose that $X_{1} \cdots(n-1)$ contains at least one element of class B and, therefore, at least one element of class A, since the first classified element of X is necessarily of class A. Then, by S, every application of transformation (3a) to X or to an intermediate set of X [I, p. 898], which does not change the magnitude of the nth element of a set, accords with (4). Further, the last such transformation in the exhaustive set for X [I, p. 898] yields a set $X^{(t)}$ in which $X_{n}^{(t)}=X_{n} \geqq w_{n}$ (cf. H) and

$$
\begin{equation*}
X_{p}^{(t)} \leqq w_{p}, \quad p=1,2, \cdots, n-1 \tag{11}
\end{equation*}
$$

otherwise $X^{(t)}$ would be a set satisfying (1.1) and having at least one element of class $A^{(t)}$ and no element of class $B^{(t)}$, which is impossible. We reach a contradiction of H as follows. Let $R(X)$ stand for the right member of (8.1), so that $X_{n} \leqq R(X)$. Certainly $R(X)$ is expressible in the form

$$
R(X)=F+G\left(X_{q_{1}}+X_{1 q}\right)+H X_{q_{1}} X_{1 q},
$$

in which F, G, H are positive and independent of $X_{q_{1}}$ and $X_{1 q}$, while $X_{q_{1}} \leqq X_{1 q}$ [I, p. 898]; therefore, the first transformation (3a) that one uses in passing from X to $X^{(t)}$ is such that $R(X)<R\left(X^{\prime}\right)$ (cf. (4)). If $t>1$, our transformation of X^{\prime} into $X^{\prime \prime}$ is such that $R\left(X^{\prime}\right)<R\left(X^{\prime \prime}\right)$, and so on. On arriving at $X^{(t)}$, one has

$$
\begin{equation*}
X_{n} \leqq R(X)<R\left(X^{\prime}\right) \leqq R\left(X^{(t)}\right), \quad t \geqq 1 \tag{11.1}
\end{equation*}
$$

But by (11) and the fact that $R\left(X^{(\alpha)}\right)$ depends only on the first $n-1$ elements of $X^{(\alpha)}$, we have

$$
\begin{equation*}
R\left(X^{(t)}\right) \leqq R(w) \tag{11.2}
\end{equation*}
$$

By (11.1) and (11.2), $X_{n}<R(w)$; and since $R(w)=w_{n}$ (cf. (7)), $X_{n}<w_{n}$. This contradicts H.
12. Proof that the w of (1.1) has Property (ii). H negated, we now merely suppose that $X \neq w$. We again avoid vacuous language by treating separately the cases $n=3$ and $n>3$.

If $n=3, X_{3}<w_{3}(c f . \S 11)$ and either $X_{p} \geqq w_{p}(p=1,2)$ or $X_{1}>w_{1}$, $X_{2}<w_{2}$; in either case X is an s-set (and $P(X)<P(w)$).

If $n>3, X_{n}$ is of class B, and every classified element of $X_{1} \ldots(n-3)$ is of class A (cf. (7)). Then if one of X_{n-2}, X_{n-1} is unclassified, X is an s-set; the same is true if X_{n-2}, X_{n-1} are of the same class or if
$X_{n-2}\left(X_{n-1}\right)$ is of class $A(B)$. Therefore, we only need to consider the case in which $X_{n-2}\left(X_{n-1}\right)$ is of class $B(A)$. Then

$$
\begin{equation*}
X_{1} X_{2} \cdots X_{n-2} \geqq w_{1} w_{2} \cdots w_{n-2}=c+1, \quad n>3 \tag{12}
\end{equation*}
$$

and $X_{1} \cdots{ }_{(n-2)}$ contains one or more elements of class A (preceding the element X_{n-2}, of class B). Apply transformation (3a) to X, or to X and one or more intermediate sets of X, until a set $X^{(t)}$ is obtained in which $X_{1}^{(t)} \cdots(n-2)$ does not contain both an element of class $A^{(t)}$ and an element of class $B^{(t)}$. Since each transformation that has been applied to this point has increased the ($n-2$)d element of a set and decreased a not larger element (with subscript less than $n-2$) each transformation applied has accorded with (4), so that necessarily

$$
X_{1}^{(t)} X_{2}^{(t)} \cdots X_{n-2}^{(t)}>c+1
$$

(cf. the first two lines below (4)), and

$$
X_{p}^{(t)} \geqq w_{p}, \quad p=1,2, \cdots, n-2,
$$

with $>$ holding for at least one of the indicated values of p (cf. (12)). Further, by hypothesis $X_{n-1}>w_{n-1}$, and by $\S 11 X_{n}<w_{n}$, while no transformation used in arriving at $X^{(t)}$ has changed the value of the $(n-1)$ th or nth element of a set. Therefore,

$$
\begin{equation*}
X_{p}^{(t)} \geqq w_{p} \quad(p=1,2, \cdots, n-1), \quad X_{n}^{(t)}=X_{n}<w_{n} \tag{12.1}
\end{equation*}
$$

with $>$ holding in (12.1) for at least one of the indicated values of p. If u is a value of p for which $>$ holds in (12.1), then $X_{u}^{(t)} \leqq X_{u}$ since transformation (3a) never increases the value of an element of class $A^{(\alpha)}$. Consequently, the classified elements of $X^{(t)}$, like the elements of X, do not decrease as their subscripts increase, and so the $X^{(t)}$ of (12.1) is an s-set.

[^0]: Presented to the Society, September 5, 1941; received by the editors June 27, 1941.
 ${ }^{1}$ H. A. Simmons, Transactions of this Society, vol. 34 (1932), pp. 876-907.
 ${ }^{2}$ Norma Stelford and H. A. Simmons, this Bulletin, vol. 40 (1934), pp. 884-894.
 ${ }^{3}$ H. A. Simmons and W. E. Block, Duke Mathematical Journal, vol. 2 (1936), pp. 317-340.
 ${ }^{4}$ In so far as we know, the form of the right member of equation (1) was first used by Tanzo Takenouchi in the Proceedings of the Physico-mathematical Society of Japan, (3), vol. 3 (1921), pp. 78-92.

[^1]: ${ }^{5}$ D. R. Curtiss, American Mathematical Monthly, vol. 29 (1922), pp. 380-387, and note, in particular, his upper bound (10), p. 384.
 ${ }^{6}$ O. D. Kellogg, ibid., vol. 28 (1921), pp. 300-303.

[^2]: ${ }^{7}$ The case $s=v$ is excluded merely for convenience in our applications of Lemma 4.1 ; the case $k=1$ is included for convenience in writing, not for use.

[^3]: ${ }^{8}$ If $n=3$, it is vacuous to say that any classified element of $X_{1 \cdots(n-3)}$ is of class A (cf. our discussion of the case $n>3$).

