
ON A FAMILY OF FOURIER TRANSFORMS 

AUREL WINTNER 

A procedure leading to specific properties of the symmetric stable 
distribution functions results by subjecting certain generalizations of 
the Bessel functions Ja{t) to a limit process.1 There arises the question 
as to the existence of the corresponding distributions in case the limit 
process involved is omitted. The object of this note is to delimit the 
conditions under which the answer is affirmative. It turns out that the 
situation is quite different from that resulting in the limiting case of 
stability. 

Let L(t; <j>) denote the Fourier transform, 

ƒ 00 

eitxd<t>{x), - oo < / < oo, 

of a distribution function 0 =<£(#), — °° <x< oo, that is, of a mono
tone function satisfying the boundary conditions <ƒ>(— oo)=0 and 
0(oo) = l. If <£' denotes the derivative of cj> (a derivative which neces
sarily exists and is finite almost everywhere), the Stieltjes integral 
L(/; 0) reduces to 

ƒ 00 

eitx<t>'(x)dx 
- 0 0 

if and only if <j> is absolutely continuous; in which case 4>f(x) is called 
the density of <p(x). 

For a real or complex number zf let z+ denote z or 0 according as z 
is or is not positive. Thus, if X > 0 and JU>0 , the even function 
L = (1 — | /1 XY+ of the real variable / represents a continuous curve in 
a (/, L)-plane, this symmetric curve being situated above or on the 
/-axis according as \t\ < 1 or 1 ^ 11\ < oo . It should be noted for later 
reference that the curve has at / = 0 a cusp with a tangent perpendicu
lar to the /-axis, a corner with two distinct finite slopes or a tangent 
parallel to the /-axis, according as X < 1, X = 1 o r X > l , while JJL is arbi
trary. 

If X = l=/x, the function ( 1 — | /1 X)/H- is 1 — | / | or 0 according as 
| / | < 1 or | / | ^ 1 , and represents therefore the Fourier transform 
L(/; cj>) of an absolutely continuous distribution function 4>(x). This is 
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seen either by subjecting the kernel of Dirichlet's factor of discon
tinuity to the process of auto-convolution or by applying a Fourier 
inversion. In fact, 

f ° ° / s i n * / 2 \ 2 ( 1 - M i f 

i ( ] c o s ix o r dx = < , 
J^Kx^yi/ I o if i g I 

'sin x/2\2
 m n (1 — I /1 if | t\ ^ 1, 

so that the density <t>'(x) is the square ( )2 on the left. 
Thus, if (X, n) = (1, 1), there exists a distribution f u n c t i o n ^ =<£XM(X) 

such that 

V0 if 1 ^ I / I < oo. 

There arises the question for what additional pairs (X, ju) does (1) 
determine a distribution function 0\M- Since the derivative 

(2) 4>nO) = (sin x/2)*/ {xTvliyi)\ 

though non-negative, has zeros, no continuity consideration can indi
cate that there exists a distribution function ^ for certain pairs (X, JJ) 
sufficiently close to (1, 1); in fact, the derivative <j>^ (x) might then 
become negative, precluding a distribution function c/>\p(x). 

Since the function (1 — | /1 x)^. of / is integrable over ( — oo, oo ), it is 
clear by Fourier inversion that, if there exists at all a distribution 
function </v satisfying (1), then 0\M is absolutely continuous and has a 
density 0\ / (x) ^ 0 proportional to 

-ƒ' 
J o 

(3) fXfi(x) = I (1 - /x)" cos xtdt\ 
J o 

the factor of proportionality being 1/ir for arbitrary (X, ju). Accord
ingly, the question can be restated by asking, which are those pairs 
(X, JU) for which the function (3) satisfies the conditions represented by 

(4) fXfi(x) à 0, 0 < x < » , 

and 
S% 00 

(5) I fUx)dx < oo. 

If the unit of length on the x-axis is changed in the proportion 1 :a, 
the definition of the Fourier transform L(t\<f>) shows that the unit of 
length on the /-axis must be changed in the proportion all. Hence, if 
a =ju1/x, the function (1) must be replaced by (1 — | j | W ) M if \t\ ^JU1/X, 
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and Oif | / | ^/x1/x- This function of / tends, as/z—»oo, toexp (— |^|x) for 
— oo < / < GO . This means that the limiting case 0\oo of <£\M is the sym
metric stable distribution function of index X; a distribution function 
which is known to exist2 if and only if X does not exceed the critical 
value X = 2 belonging to a Gaussian distribution (the condition 
f\oo(x) ^ 0 corresponding to (4) being violated for certain values of x 
if and only if X>2) . 

I t will turn out that the characteristic condition X ^ 2 belonging to 
JU = oo must be replaced by X ^ 1 for every finite ju ^ 1. In other words, 
if fi is arbitrarily fixed on the range 1 ^ M < °° > the distribution func
tion 0XM does or does not exist according as X g 1 or X > 1. Incidentally, 
the trivial case (2) happens to be a limiting case, in the sense that (4), 
where X S 1 ̂ M> c a n t>e refined to 

(6) /xM0) > 0, 0 < x < oo 

unless (X, /x) = (1, 1). 
I t seems to be of interest that there exists a fixed lower bound 

(equal to 1) for the admissible values of ju in the whole admissible 
range of X ( ^ 1 ) . Tha t IJL must be limited by some lower bound for 
every given admissible X, is clear from Levy's theory of indefinitely 
divisible laws. In fact, if X is arbitrarily fixed, (1) requires that 
L(t; <£XM) be the jj,th power of L(t; 0Xi) for every /x, although L(t; <£\i) 
vanishes for certain values of /. But this contradicts the stochastic 
theory just mentioned. 

Actually, it is easy to see directly that there exists for every X > 0 
a sufficiently small JJL>0 such that the corresponding function (3) be
comes negative for certain values of x and violates, therefore, (4). In 
fact, it is clear for reasons of continuity that there must exist for every 
X>0 such a sufficiently small fJL>0, if it is true that, for every fixed 
X>0, the function (3) becomes negative for certain values of x in the 
limiting case ju = 0. But if /z = 0, then (3) reduces for every X>0 to 

f\o(x) = I cos xt dt = x~x sin x, 
Jo 

and attains therefore negative values. 
For sake of simplicity, it will from now on be assumed that JJL has 

a fixed value not less than 1, while X>0 is arbitrary. 
It will be shown that (4) is violated or the necessary and sufficient 

condition, represented by (4) and (5) together, is satisfied, according 

2 For sharper results see, loc. cit., where references are given to the investigations 
of Levy and Pólya, 
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as X > 1 or X ^ 1 ; that is, according as the function on the right of (1) 
is or is not differentiable at / = 0. 

First, if X>2, the function on the right of (1) is l+o(t2) as /->0. 
But this implies3 that either (4) is violated or L{t\ 0xM) is independent 
of /, and the latter case is excluded by (1). Next, if X = 2, then (3) 
reduces to a constant multiple of the classical integral representation 
of the ratio Jll+n2{x)/x^+ll2\ so that (4) is violated in view of the 
asymptotic formula of the Bessel functions for large real x. But a per
fectly similar asymptotic formula, again with a sine function in the 
numerator, can be proved4 for (3) even if X<2, provided that X > 1 . 
Accordingly, (4) is violated5 whenever X > 1 . 

It will now be shown that (4) is satisfied whenever X ^ l . To this 
end, it will be sufficient to prove (6), since the limiting case (X, ju) 
= (1, 1) is taken care of by (2). 

Partial integration of (3) shows that 

(7) */XM(*) = V I (1 - Py-ty-1 sin xt dt. 
J n 

But, if FXfl(t) is an abbreviation for (1 — Z^^r1^-1, the last integral can 
be written in the form 

ƒ
» oo oo •» ( n + D i r / x 

Fx^t) sin xt dt = x~lY^ (~ l ) n I FXfi(t/x) sin t dt 
0 n « 0 J mrl x 

for every x > 0. Hence, in order to prove (6), it is sufficient to ascertain 
that the non-negative function Fxn{t/x) of t/x is steadily decreas
ing as long as it does not vanish; in other words, that the function 
(1 —/x)^~1/x~1 of / is steadily decreasing on the interval 0 < / < l . But 
both factors (1—/x)^-1, tx~l are positive and non-increasing, and at 

3 Loc. cit., p . 80. 
4 Cf. A. Wintner, On the asymptotic formulae of Riemann and of Laplace, Proceed

ings of the National Academy of Sciences, vol. 20 (1934), pp. 57-62. 
5 Naturally, the problem is less deep than to necessitate an actual application of 

the sharp asymptotic fact, referred to before. For instance, if J U = 1 , a partial integra
tion transforms (3) into 

f\i(x) = Aar* f ^ - i sin xt dt = Aar1"* J t^1 sin / dt. 
J o Jo 

But this function violates (4) whenever A> 1, since, if A — 1 > 0 , the successive "waves" 

/
(n+l)7r /» (n+1)* 

*x-1 sin tdt = I j* - i | sin t\ dt, where n = 0, 1, 2, • • • , 
.ir J rnr 

increase with n. It is easy to transfer this primitive proof from J U = 1 to every JU>1» 
if use is made of the second mean-value theorem. 
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least one of them is decreasing, on the interval 0 < / < l . In fact, 
JU— 1 ^ 0 and X— 1 ^ 0 by assumption, where at least one of the two 
signs of equality is excluded by (X, jx) 9e (1, 1). 

This proves (4) for X ^ l ^ / i . It remains to be shown that (5) is 
satisfied for X ^ l ^/x. To this end, it is sufficient to verify that 

(8) fx^x) = 0(x-x-x) , as x -» oo. 

Suppose first that X = 1. Then (7) shows that (8) reduces to 

ƒ. 
l 

(1 — ty~~l sin xtdt = 0(x~l), as x —> oo. 
o 

But this estimate is clear from the second mean-value theorem. 
In the remaining case, where X < 1 , the estimate (8) can be refined 

to the asymptotic formula 

/*r(l + X) sin (TTX/2) 
(9) /xM0) ~ — > as x -> oo ; X < 1. 

In fact, since 0 < X < 1 implies the existence of the integral 

ƒi oo 

/X- J sin t dt = r(X) sin (TTX/2), 
o 

it is clear from (7) that (9) is equivalent to the assertion that , as 
x-+ oo, the function 

x\ I (J _ /X)M-I/X-I s m x i dt 

Jo 

tends to the limit (10). This function can be written in the form 

(1 - /V^)"" 1 ^" 1 sin tdt, ƒ' 
and tends therefore to the limit (10) if it is legitimate to carry out the 
process x—» oo beneath the last integral sign. But this is readily justified 
by the second mean-value theorem. 
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