EVERYWHERE DENSE SUBGROUPS OF LIE GROUPS

P. A. SMITH

A recent note by Montgomery and Zippin ${ }^{1}$ leads one to speculate concerning the nature of everywhere dense proper subgroups of continuous groups. Such subgroups can easily be constructed. Suppose for example that G is a non-countable continuous group which admits a countable subset G_{0} filling it densely. The group generated by G_{0} is everywhere dense in G but is not identical with G. In the case of Lie groups, it is easy to see that an abelian G admits non-countable subgroups of the sort in question; whether or not a non-abelian G does so, appears to be a more difficult question. We shall, however, show that if G is simple, proper subgroups of G cannot, so to speak, fill G too densely.

Let G be a simple ${ }^{2}$ Lie group of dimension r with $r>1$, and let U be a canonical nucleus of G-that is, a nucleus which can be covered by an analytic canonical coordinate system. An arbitrary point x of U is contained in the central of at least one closed proper Lie subgroup of G with non-discrete central. In fact, through x there passes a oneparameter subgroup γ; the closure of γ is an abelian Lie subgroup and this subgroup is proper since G is simple and $r>1$.

Theorem. Let G be a simple Lie group of dimension r greater than one and let g be a proper subgroup filling G densely. There exists at least one proper closed Lie subgroup H of G such that those left- (right-) cosets of H which fail to meet g fill G densely. For H one may take any closed proper Lie subgroup of G whose central is non-discrete and contains an arbitrarily chosen point p in $\mathrm{g} \cap U, U$ being any given canonical nucleus of G.

Proof. Let U, p, H be chosen and let us consider only the leftcosets of H. It will be sufficient to prove that there exists at least one coset, say $a H$, which fails to meet g. For, the cosets obtained by multiplying $a H$ on the left by arbitrary elements of \mathfrak{g} fail to meet \mathfrak{g} and fill G densely.

[^0]Let us assume the contrary, namely that every coset of H meets g. Let H^{*} be the totality of cosets of H and let the elements of H^{*} be denoted by $e^{*}=H, a^{*}=a H, \cdots$. Let σ be the mapping $x \rightarrow x^{*}$ $\left(x^{*}=x H\right)$ of G into H^{*}. Let H^{*} be topologized in the usual way by taking as open in H^{*} every set of the form σA where A is an open subset of G. The space H^{*} is homogeneously locally euclidean.-Now let x^{*} be an element of H^{*} and let x be a representative of the coset x^{*}. Then $x p x^{-1}$ (where p is defined in the theorem) is independent of x. For if y is a second representative of x^{*}, then $x^{-1} y \subset H$ so that $x^{-1} y p=p x^{-1} y$ since p is in the central of H. Hence $x p x^{-1}=y p y^{-1}$. Thus the formula $\tau\left(x^{*}\right)=x p x^{-1}$ defines a mapping τ of H^{*} into G which, in particular, carries e^{*} into p. Evidentally τ is continuous. In fact it is easy to see that τ is analytic relative to an arbitrarily chosen analytic canonical coordinate system x_{1}, \cdots, x_{r} covering U, and a suitably chosen coordinate system covering a neighborhood of e^{*}.

The mapping τ carries H^{*} into a subset of g. For, by our assumption on the cosets of H, an element y^{*} of H^{*} can be written in the form $y^{*}=g H$ where $g \subset g$. Hence we have $\tau\left(y^{*}\right)=g p g^{-1} \subset g$. -Moreover, any given neighborhood V^{*} of e^{*} contains at least one point x^{*} such that $\tau\left(x^{*}\right) \neq p$. For otherwise we have $\tau(y H)=p$ for every y in a certain nucleus V of G, that is, for every y in V and h in H we have $y h p(y h)^{-1}$ $=p$ or $y p y^{-1}=p$. But then the one-parameter subgroup of G determined by p would be invariant, contrary to the hypothesis that G is simple.

Let W be a nucleus of G such that $W^{-1} W W \subset U$. It follows from the last two paragraphs that there exists in H^{*} a point z^{*} near e^{*} such that the linear segment $e^{*} z^{*}$ is carried by τ into an analytic arc contained in $\mathfrak{g} \cap W$ and consisting of more than a single point. A suitably chosen piece of this arc, when multiplied on the left by the inverse of one of its points, furnishes an analytic 1 -cell K contained in $\mathfrak{g} \cap W$ and containing e, the identity of G. Starting with K we shall construct a dimensionally increasing sequence of analytic continua, subsets of \mathfrak{g}. In what follows, let it be understood that all functions are real, singlevalued and analytic over the domains indicated.

We may suppose that K is defined parametrically, say by $x_{i}=f_{i}(t)$ where $-1<t<1$ and $f(0)=e$. The set $K K$ is in \mathfrak{g} and is defined by equations of the form $x_{i}=g_{i}(s, t)$ where $-1<s, t<1$. Suppose that $\operatorname{dim} K K>\operatorname{dim} K$; that is, suppose $\operatorname{dim} K K=2$. Then being an analytic locus, $K K$ contains points at which it is locally euclidean 2-dimensional. If b is such a point, then $b^{-1} K K$ (a subset of \mathfrak{g}) is locally euclidean at e. Hence $\mathfrak{g} \cap W$ contains a 2 -cell K_{2} defined say by $x_{i}=h_{i}(u, v)$ where $-1<u, v<1$ and $h(0,0)=e$. We next consider the
set $K_{2} K_{2}$ and suppose that its dimension exceeds that of K_{2}. On continuing in this manner, we finally obtain a k-cell E in $\mathfrak{g} \cap W$ defined say by $x_{i}=h_{i}\left(u_{1}, \cdots, u_{k}\right)$ where $-1<u_{i}<1$ and $h(0, \cdots, 0)=e$, and such that $\operatorname{dim} E E=\operatorname{dim} E=k$. We assert that E contains subsets E^{*} and F such that (1) E^{*} and F are k-cells; (2) $e \subset F \subset E^{*}$; (3) $F F \subset E^{*}$.

To prove this, we first note that by the theory of implicit functions, E contains a k-dimensional sub-cell E^{*} definable, after renaming the coordinates x_{i} if necessary, by equations

$$
\begin{equation*}
x_{i}=X_{i}\left(x_{1}, \cdots, x_{k}\right), \quad i=k+1, \cdots, r, \tag{1}
\end{equation*}
$$

where $\left(x_{1}, \cdots, x_{k}\right)$ ranges over the cube $C_{\delta}:-\delta<x_{i}<\delta$, and where $X_{i}(0, \cdots, 0)=e_{i}=0$. On replacing δ by a smaller number if necessary, it is easy to see that C_{δ} contains a cube $C_{\mu}:-\mu<x_{i}<\mu$ ($i=1, \cdots, h$) such that if F is the k-cell defined by (1) with (x_{1}, \cdots, x_{k}) restricted to the cube C_{μ}, and if q is an arbitrary point of F, then $q F$, like F, is definable by equations of the form (1):

$$
x_{i}=X_{i}^{q}\left(x_{1}, \cdots, x_{k}\right)
$$

where (x_{1}, \cdots, x_{k}) ranges over a certain open subset A^{q} of C_{δ}. Now $E E$ is the union of k-cells $q E$ ($q \subset E$), hence is k-dimensional at every point. Being an analytic locus, the points q at which $E E$ is locally euclidean k-dimensional fill it densely. Consider such a point q. The k-cells F and $q F$ intersect at q. But since both are contained in $E E$ which is locally euclidean k-dimensional at q, they coincide identically in the neighborhood of q. Hence the functions X_{i} and X_{i}^{q} are identically equal over an open subset of A^{q}; hence, by the theory of analytic functions, they are equal over the whole of A^{q}. Hence $q F \subset E^{*}$, and this is true for a set of points q filling F densely. By continuity this relation holds for arbitrary q in F. Hence $F F \subset E^{*}$, proving our assertion.

It is easy to see that on replacing F by a smaller k-cell if necessary, we have also $F^{-1} \subset E^{*}$. In short F is a k-dimensional local Lie subgroup of G; hence it is an open subset of a k-dimensional linear subspace L of the linear space of the canonical coordinates x_{1}, \cdots, x_{r}. If $k<r$, there exists in W an element a such that the linear subspace L^{\prime} determined by $F^{\prime}=a F a^{-1}$ is different from L; otherwise the Lie subalgebra represented by L is invariant. Since g is everywhere dense in G, we may assume, so far as the relation $L \neq L^{\prime}$ is concerned, that $a \subset \mathfrak{g}$. Then $F F^{\prime} \subset g$. Moreover, it is evident that $\operatorname{dim} F F^{\prime}>k$. We can now repeat the construction described above starting with a suitably chosen analytic cell of dimension exceeding k in $F F^{\prime}$. We obtain
finally an analytic r-cell contained in $\mathfrak{g} \cap W$. Hence \mathfrak{g} contains a nucleus of G and hence $\mathfrak{g}=G$, a contradiction which proves the theorem. ${ }^{3}$

Columbia University

[^1]
VECTOR SPACES OVER RINGS

C. J. EVERETT ${ }^{1}$

1. Introduction. Let $\mathfrak{M}=u_{1} K+\cdots+u_{m} K$ be a vector space (linear form modul [5, p. 111]) over a ring $K=\{0, \alpha, \beta, \cdots ; \epsilon$ unit element $\}$. By a submodul $\mathfrak{N} \leqq \mathfrak{M}$ is meant an "admissible" submodul: $\mathfrak{N K} \leqq \mathfrak{N}$. Elements v_{1}, \cdots, v_{n} of a submodul \mathfrak{n} form a basis for \mathfrak{n} (notation: $\mathfrak{N}=v_{1} K+\cdots+v_{n} K$) in case $\sum v_{i} \alpha_{i}=0$ implies $\alpha_{i}=0$, $i=1, \cdots, n$, and if every element of \mathfrak{R} is expressible in the form $\sum v_{i} \alpha_{i}, \alpha_{i} \in K$. The equivalent formulations of the ascending chain condition for submoduls of a vector space, and for right ideals of a ring will be used without further comment [5, §§80, 97].
2. Basis number, linear transformations. We remark that the following holds.
(A) The ascending chain condition is satisfied by the submoduls of a vector space \mathfrak{M} over K if and only if it is satisfied by the right ideals of K.

An infinite chain of right ideals $\mathfrak{r}_{1}<\mathfrak{r}_{2}<\cdots$ in K yields an infinite chain of submoduls $u_{1} \mathfrak{r}_{1}<u_{1} \mathfrak{r}_{2}<\cdots$ in \mathfrak{M}. The other implication is proved in [5, p. 87].
[By using a lemma due to N. Jacobson (Theory of Rings, in publication) Theorem (A) and the corresponding theorem for descending chain condition are easily proved in a unified manner.]

Linear transformations of \mathfrak{M} on \mathfrak{M} are given by $u_{j} \rightarrow u_{j}^{\prime}=\sum u_{i} \alpha_{i j}$. Write $\left(u_{1}^{\prime}, \cdots, u_{m}{ }^{\prime}\right)=\left(u_{1}, \cdots, u_{m}\right) A, A=\left(\alpha_{i j}\right)$. Under $u_{j} \rightarrow u_{j}^{\prime}$, let $\mathfrak{M}_{0} \rightarrow 0$. Thus $\mathfrak{M} / \mathfrak{M}_{0} \cong \mathfrak{M} A \leqq \mathfrak{M}$. Clearly $\mathfrak{M}_{0}=0$ if and only if $A v=0$ implies $v=0$, v an $m \times 1$ matrix over K, and $\mathfrak{M} A=\mathfrak{M}$ if and only if there exists an $m \times m$ matrix R with $A R=I$, the identity matrix.

Possibilities (i) $\mathfrak{M}_{0}=0$ and $\mathfrak{M} A=\mathfrak{M}$; (ii) $\mathfrak{M}_{0}>0$ and $\mathfrak{M} A<\mathfrak{M}$; (iii) $\mathfrak{M}_{0}=0$ and $\mathfrak{M} A<\mathfrak{M}$ are familiar. The possibility of (iv) $\mathfrak{M}_{0}>0$

[^2]
[^0]: Received by the editors July 15, 1941.
 ${ }^{1}$ Deane Montgomery and Leo Zippin, A theorem on the rotation group of the 2sphere, this Bulletin, vol. 46 (1940), pp. 520-521. Our theorem may be regarded as a generalization of the theorem of Montgomery and Zippin and the proofs of the two theorems may be regarded as being the same in principle.
 ${ }^{2}$ We use simple here in the sense of having a simple Lie algebra. A simple group need not be connected.

[^1]: ${ }^{3}$ We have proved, incidentally, that if an everywhere dense subgroup \mathfrak{g} of a simple Lie group $G_{r}(r>1)$ contains an analytic arc, then $\mathfrak{g}=G$.

[^2]: Presented to the Society, September 5, 1941; received by the editors May 27, 1941.
 ${ }^{1}$ The results presented here were obtained while the author was Sterling Research Fellow in mathematics, Yale University, 1940-1941. Thanks are due to Professors Oystein Ore, R. P. Dilworth, and the referee for helpful suggestions.

