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finally an analytic r-cell contained in $r\W. Hence g contains a nu
cleus of G and hence Q = G, a contradiction which proves the theorem.3 

COLUMBIA UNIVERSITY 

3 We have proved, incidentally, that if an everywhere dense subgroup g o f a simple 
Lie group Gr {r>l) contains an analytic arc, then Q = G. 

VECTOR SPACES OVER RINGS 
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1. Introduction. Let Wl = uiK + • • • + umK be a vector space (lin
ear form modul [5, p. I l l ] ) over a ring K= {0, a, /3, • • • ; e unit ele
men t} . By a submodul 9î ^ 9DÎ is meant an "admissible" submodul: 
WK^yi. Elements v\, • • • , vn of a submodul ÏÏI form a basis for 31 
(notation: yi—ViK-^- • • • -\-vnK) in case y^îw» = 0 implies ai — O, 
i = l, • • • , n, and if every element of 9Î is expressible in the form 
^ViOti, a^K. The equivalent formulations of the ascending chain 
condition for submoduls of a vector space, and for right ideals of a 
ring will be used without further comment [5, §§80, 97]. 

2. Basis number, linear transformations. We remark that the fol
lowing holds. 

(A) The ascending chain condition is satisfied by the submoduls of a 
vector space 9JÎ over K if and only if it is satisfied by the right ideals of K. 

An infinite chain of right ideals r i < t 2 < • • • in K yields an infinite 
chain of submoduls uit\<UiX<i< • • • in 9K. The other implication is 
proved in [5, p. 87]. 

[By using a lemma due to N. Jacobson {Theory of Rings, in publica
tion) Theorem (A) and the corresponding theorem for descending 
chain condition are easily proved in a unified manner. ] 

Linear transformations of $Jl on 2JÎ are given by Uj—>uj =X)w*a*j* 
Write (u{, • • • , uj) = (ux, • • • , um)A, A=(aij). Under Uj—^uj, let 
3»o->0. Thus m/m0**WU ^Wl. Clearly 5DÎ0 = 0 if and only if Av = 0 
implies v = 0, v an mXl matrix over K, and WA = SCR if and only if 
there exists a n w X w matrix R with AR = I, the identity matrix. 

Possibilities (i) $m0 = 0 and MA=M) (ii) 9Ko>0 and WIAKW; 
(iii) 9fto = 0 and 9JIA <m are familiar. The possibility of (iv) 2ft0>0 
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and $IA = 9JÏ is demonstrated later in (D), thus settling a question 
raised by van der Waerden [5, p . 115]. 

Case (iii) implies an infinite descending chain in 9JÎ, case (iv) an 
infinite ascending chain in 2JÎ. 

(B) The set (vi, • • , vn) = (ux, • • • , um)A, n<m, forms a basis f or 
(SR = uxK-\- - - - -\rUmK if and only if the mXm matrix (AO) has a right 
inverse: (A0)R = I, and Av = 0 implies v = 0, v an nXl matrix over K. 

This is an immediate consequence of the basis definition. 

(C) If the right ideals of K satisfy the ascending chain condition, 
every basis of a vector space %R = uiK-\- • • • -\-umK has m elements. 

For a matrix (AO) of the type in (B) defines a linear transformation 
of type (iv) violating the chain condition in K. 

Hence with every vector space 93Î over a ring K with ascending 
chain condition for right ideals is associated a unique basis number 
b(ç$ï). K a quasi-field is a trivial special case. 

(D) If K is the ring of all infinite matrices over a field, with only a 
finite number of nonzero elements in each row and each column, then the 
vector space WH = UiK+ • • • +umK, m>\, has a basis of one element'. 
<3Jl = uK. Thus there exist, for arbitrary m, I Xm matrices (ai, • • • ,am), 
(/Si, • • • , j8m) over K such that (on, • • • , am);(j8i, • • • , j8m)=I, the 
mXm identity matrix, with aS = 0, i = 1, • • • ,m,fiÇ:K implying ]8 = 0.2 

Let hi be the vector (0, 0, • • • , 0, 1, 0, • • • ) ' with 1 in the 
i th position from above. Matric elements of K are defined by 
their column vectors; let the unit of K be e = (ôi, ô2, • • • ) and 
«i = (0, di, 0, 52, 0, d8» * * • )i «2 = (ôi, 0, 52, 0, 53, 0, ô4, • • • ), a3 = ai , 
<x± = a{. Let 

_ (ai °\ R __ la% ai\ 
~ v*2 o/' \o o / 

Then AB = If and aij3 = a2|Ö = 0 implies /3 = 0, PEK. Let 

where I is the (m — 2)X(m — 2) identity matrix. I t follows from (B) 
that U\, - - - , um-2t v form a basis for 3JÎ, where (u\, • • • , um-^ v, 0) 

2 A ' means A transpose. 
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= (ui, • • • , Um)A\. The induction is obvious, and 9JÎ has a basis of a 
single element. The theorem follows from (B). 

3. Vector spaces over right principal ideal rings. We now remark 
that the following holds: 

(E) If<$ft = uiK+ • • • -\-umKis a vector space over a ring Kin which 
every right ideal x > 0 is of type poK, where po<x = 0, aÇzK implies a = 0, 
then every submodul SSI, 0<Sfl^SBl, has a basis of n elements, n^m. 

This is only a trivial modification of the van der Waerden result 
[5, pp. 88, 121 ], appropriate since the condition subsequently also ap
pears to be necessary (see (F)). 

LEMMA 1. If every submodul SSI, 0<SSt£Sffl = uiK + • • • +umK has 
a basis of nSm elements, and x is a right ideal of K, 0<x^K, then the 
submodul Sft = u\x\J • • • \Jumx, consisting of all sums^Uipi, p^Gr, has 
a basis un, • • • , um\ with uiV = UaK, i = l, • • • , m, and ua is a basis 
for UiV. 

ForO<UiX = UiiK+- • • +UiniK,lSnit^m,andSSl = uiX^J • • • \Jumx 
is a submodul for which the «»•/ together form a basis of X)n* elements. 
The hypothesis of the lemma implies the ascending chain condition 
in SSR, and hence in K (by (A)). Hence by (C) the basis number for 
SSI is unique and m^^n^m, w» = l, i = l, • • • , m. Thus UiX = Ui\-K. 

(F) Let $Jl = uxK+ • • • +umK be a vector space over K. Then every 
submodul SSI, 0<SSltkSSR, has a basis of nUm elements, if and only if 
every right ideal r > 0 in K is of type p0K, where p0a = 0, a^K, implies 
a = 0. 

For if r > 0 is a right ideal of K, by the lemma, u\X = U\\K, U\\ = Uip0l 

PoGr. Then UiX = Uip0K and x = p0K. Moreover p0a = 0 implies una = 0 
and a = 0. 

Now suppose SIJl = uiK+ • • • +umK is a vector space over a ring 
K of the type in (F). To every submodul Sfl, 0 <SSl £%Jl, corresponds a 
unique basis number b(Sft). Define 6(0) = 0 . 

(G) If Sffl~uiK+ • • • +umK is a vector space over a ring K of the 
type in (F), the basis number b(Sfl), O^Sft^SD?, is a positive modular 
functional [ l , p. 40 ] : 

Ml. &(»U«)+&(«nS) =&(«)+&(»), 
M2. Ug.%^m implies b($)£b(&). 

M2 is clear from (F). A proof of M l may be made by induction on 
ô(2l). We treat here only the following case: 
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Let K be a (noncommutative) domain of integrity in which every 
right ideal is principal.3 The vector space 9ft = ^ii£ + • • • +umK may 
then be regarded as imbedded in the vector space 9ft* = Wii£ + • • • 
+umK where K is the quotient quasi-field of K. The existence of K 
follows from theorems developed by Ore [3, p. 466] and a proof by 
Teichmüller [4] that the least common multiple of nonzero elements 
in such a K is not zero. The correspondence 

(7) Stt = vxK + • • • + vnK ->5ft* = vi K + • • • + vn K 

is a well-defined correspondence on the lattice L of all iT-submoduls 
of 9ft to the entire lattice L of i£-submoduls of 9ft*, (since Sft* is inde
pendent of the Sft-basis). Observe that ô(9l) =&(9t*) as a submodul 
of 9ft*. For the ^-independence of a basis (vi, • • • , vn) of 9Î implies the 
^-independence of vi, • • • ,vn: Le t^"^0^ = 0, âi = ai/(3iÇ.K (Ore quo
tient) ; if IJL is the (nonzero) least common multiple of the/3t-, y^Vjajix = 0, 
and âifxÇEiK by the Ore theory referred to. Hence a;ju = 0, and â*- = 0, 
i = l, • • • , n. 

It is trivial to verify that : 
(1) 21 =33 implies 31* =33*. 
(2) (2lU33)* = 2l*U33*. 
(3) (2IPi33)* = 2l*n33*. 
For example, in (2) (2tV^33)* = 2t*U33* follows from (1). But every 

element in (2IUS3)* is a i£-form in a i£-basis of 21U33, hence is in 
2I*U33*. Since 5(21*) is the dimension of 21* over K, it follows that 
5(21) is a positive modular functional on L. 

We may now apply the theory of such functionals [l, p. 42, Theo
rem 3.10] to show that 5(21,33) =5(2ÏU«)-5(2inS3) is a quasi-metric 
on L: 

(4) ô(2t,33)=0, 0(21, 21) = 0 . 
(5) 0(21,33) + 0(33, 6)^0(21, 6) . 
The relation 21—33 defined by S(2I, 33) = 0 is an equivalence relation, 

and the correspondence 21—>[2I], the equivalence class containing 21, 
is a lattice homomorphism of L onto the metric lattice L' of equiva
lence classes. For want of a name, we call L' the metric homomorph 
of L. However, in the correspondence (7), 2Ï* =33* if and only if 21—33. 
For, if 21—33, 5(2TU33) =5(2ÏH33), and 2I*U33*=jï*=33* = 2l*n33*, 
since all these have the same dimension over K. Conversely, if 
2i*=33*, then (2tU33)* = 2l* = (2in33)*, 5(21U33) = 6 ( » n » ) and 21-33. 

(H) If K is a right principal ideal domain of integrity, quotient field 
3 For the elementary divisor theory of matrices over such domains, and references 

to the literature, see [2]. 
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K, then the basis number b($l) is a positive modular functional on the 
lattice L of submoduls of W = uiK+ • • • -\-umK, and the metric homo-
morph L' of L is lattice isomorphic with the lattice of submoduls of 
<M* = ulK+ • • • +umK. 

4. Vector spaces over quasi-fields. We now typify vector spaces 
over quasi-fields by (I) and (J). 

REMARK. A ring K = {0, a, • • • } with unit e, whose only right ideal 
v>0is K,is a quasi-field. 

Let a ^ O . Then 0<aK = K, a/3 = e. The right annihilator (right) 
ideal r of a is (0), for r > 0 implies x — K, and ae=a = 0. Hence 
a(j8a — e) =a/3a — a = a — a = 0 and fia = €. 

(I) Let$R = uiK+ •'• • +umK be a vector space. Then every submodul 
5ft, 0 <9t ^ 93Î, has a basis ofn£m elements, with 9Î <99? implying n<my 

if and only if Kis a quasi-field ; that is, the modular functional b(yt) on a 
vector space over a ring K of the type in (F) is sharply positive [l, p . 41 ] 
if and only if K is a quasi-field. 

These are well known properties of a vector space over a quasi-
held. If they hold, then by Lemma 1, the existence of a right ideal r, 
0<x<K implies 5ft = uxx\J • • • KJumv<Wl with b(W) =b(Wl), contrary 
to hypothesis. Hence (I) follows from the remark above. 

(J) Let 9JÎ be a vector space over a ring K of the type in (F). Then SO? 
satisfies the descending chain condition if and only if K is a quasi-field. 

For rings of this type, the descending chain condition in $ft and 
sharp positiveness of b(3l) are equivalent. If 3l<33 with &(3t) —b($8), 
the transformation of 33-basis into 2l-basis is of type (iii), on 33. 
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