finally an analytic r-cell contained in $\mathfrak{g} \cap W$. Hence \mathfrak{g} contains a nucleus of G and hence $\mathfrak{g}=G$, a contradiction which proves the theorem. ${ }^{3}$

Columbia University

[^0]
VECTOR SPACES OVER RINGS

C. J. EVERETT ${ }^{1}$

1. Introduction. Let $\mathfrak{M}=u_{1} K+\cdots+u_{m} K$ be a vector space (linear form modul [5, p. 111]) over a ring $K=\{0, \alpha, \beta, \cdots ; \epsilon$ unit element $\}$. By a submodul $\mathfrak{N} \leqq \mathfrak{M}$ is meant an "admissible" submodul: $\mathfrak{N K} \leqq \mathfrak{N}$. Elements v_{1}, \cdots, v_{n} of a submodul \mathfrak{n} form a basis for \mathfrak{n} (notation: $\mathfrak{N}=v_{1} K+\cdots+v_{n} K$) in case $\sum v_{i} \alpha_{i}=0$ implies $\alpha_{i}=0$, $i=1, \cdots, n$, and if every element of \mathfrak{R} is expressible in the form $\sum v_{i} \alpha_{i}, \alpha_{i} \in K$. The equivalent formulations of the ascending chain condition for submoduls of a vector space, and for right ideals of a ring will be used without further comment [5, §§80, 97].
2. Basis number, linear transformations. We remark that the following holds.
(A) The ascending chain condition is satisfied by the submoduls of a vector space \mathfrak{M} over K if and only if it is satisfied by the right ideals of K.

An infinite chain of right ideals $\mathfrak{r}_{1}<\mathfrak{r}_{2}<\cdots$ in K yields an infinite chain of submoduls $u_{1} \mathfrak{r}_{1}<u_{1} \mathfrak{r}_{2}<\cdots$ in \mathfrak{M}. The other implication is proved in [5, p. 87].
[By using a lemma due to N. Jacobson (Theory of Rings, in publication) Theorem (A) and the corresponding theorem for descending chain condition are easily proved in a unified manner.]

Linear transformations of \mathfrak{M} on \mathfrak{M} are given by $u_{j} \rightarrow u_{j}^{\prime}=\sum u_{i} \alpha_{i j}$. Write $\left(u_{1}^{\prime}, \cdots, u_{m}{ }^{\prime}\right)=\left(u_{1}, \cdots, u_{m}\right) A, A=\left(\alpha_{i j}\right)$. Under $u_{j} \rightarrow u_{j}^{\prime}$, let $\mathfrak{M}_{0} \rightarrow 0$. Thus $\mathfrak{M} / \mathfrak{M}_{0} \cong \mathfrak{M} A \leqq \mathfrak{M}$. Clearly $\mathfrak{M}_{0}=0$ if and only if $A v=0$ implies $v=0$, v an $m \times 1$ matrix over K, and $\mathfrak{M} A=\mathfrak{M}$ if and only if there exists an $m \times m$ matrix R with $A R=I$, the identity matrix.

Possibilities (i) $\mathfrak{M}_{0}=0$ and $\mathfrak{M} A=\mathfrak{M}$; (ii) $\mathfrak{M}_{0}>0$ and $\mathfrak{M} A<\mathfrak{M}$; (iii) $\mathfrak{M}_{0}=0$ and $\mathfrak{M} A<\mathfrak{M}$ are familiar. The possibility of (iv) $\mathfrak{M}_{0}>0$

[^1]and $\mathfrak{M A} A=\mathfrak{M}$ is demonstrated later in (D), thus settling a question raised by van der Waerden [5, p. 115].

Case (iii) implies an infinite descending chain in \mathfrak{M}, case (iv) an infinite ascending chain in \mathfrak{M}.
(B) The set $\left(v_{1}, \cdots, v_{n}\right)=\left(u_{1}, \cdots, u_{m}\right) A, n<m$, forms a basis for $\mathfrak{M}=u_{1} K+\cdots+u_{m} K$ if and only if the $m \times m$ matrix $(A 0)$ has a right inverse: $(A 0) R=I$, and $A v=0$ implies $v=0$, v an $n \times 1$ matrix over K.

This is an immediate consequence of the basis definition.
(C) If the right ideals of K satisfy the ascending chain condition, every basis of a vector space $\mathfrak{M}=u_{1} K+\cdots+u_{m} K$ has m elements.

For a matrix ($A 0$) of the type in (B) defines a linear transformation of type (iv) violating the chain condition in K.

Hence with every vector space \mathfrak{M} over a ring K with ascending chain condition for right ideals is associated a unique basis number $b(\mathfrak{M}) . K$ a quasi-field is a trivial special case.
(D) If K is the ring of all infinite matrices over a field, with only a finite number of nonzero elements in each row and each column, then the vector space $\mathfrak{M}=u_{1} K+\cdots+u_{m} K, m>1$, has a basis of one element: $\mathfrak{M}=u K$. Thus there exist, for arbitrary $m, 1 \times m$ matrices $\left(\alpha_{1}, \cdots, \alpha_{m}\right)$, $\left(\beta_{1}, \cdots, \beta_{m}\right)$ over K such that $\left(\alpha_{1}, \cdots, \alpha_{m}\right)^{\prime}\left(\beta_{1}, \cdots, \beta_{m}\right)=I$, the $m \times m$ identity matrix, with $\alpha_{i} \beta=0, i=1, \cdots, m, \beta \in K$ implying $\beta=0 .{ }^{2}$

Let δ_{i} be the vector $(0,0, \cdots, 0,1,0, \cdots)^{\prime}$ with 1 in the i th position from above. Matric elements of K are defined by their column vectors; let the unit of K be $\epsilon=\left(\delta_{1}, \delta_{2}, \cdots\right)$ and $\alpha_{1}=\left(0, \delta_{1}, 0, \delta_{2}, 0, \delta_{3}, \cdots\right), \alpha_{2}=\left(\delta_{1}, 0, \delta_{2}, 0, \delta_{3}, 0, \delta_{4}, \cdots\right), \alpha_{3}=\alpha_{1}^{\prime}$, $\alpha_{4}=\alpha_{2}^{\prime}$. Let

$$
A=\left(\begin{array}{ll}
\alpha_{1} & 0 \\
\alpha_{2} & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
\alpha_{3} & \alpha_{4} \\
0 & 0
\end{array}\right)
$$

Then $A B=I$, and $\alpha_{1} \beta=\alpha_{2} \beta=0$ implies $\beta=0, \beta \in K$. Let

$$
A_{1}=\left(\begin{array}{ll}
I & 0 \\
0 & A
\end{array}\right)
$$

where I is the ($m-2$) $\times(m-2)$ identity matrix. It follows from (B) that $u_{1}, \cdots, u_{m-2}, v$ form a basis for \mathfrak{M}, where ($u_{1}, \cdots, u_{m-2}, v, 0$)

[^2]$=\left(u_{1}, \cdots, u_{m}\right) A_{1}$. The induction is obvious, and \mathfrak{M} has a basis of a single element. The theorem follows from (B).
3. Vector spaces over right principal ideal rings. We now remark that the following holds:
(E) If $\mathfrak{M}=u_{1} K+\cdots+u_{m} K$ is a vector space over a ring K in which every right ideal $\mathrm{r}>0$ is of type $\rho_{0} K$, where $\rho_{0} \alpha=0, \alpha \in K$ implies $\alpha=0$, then every submodul $\mathfrak{N}, 0<\mathfrak{N} \leqq \mathfrak{M}$, has a basis of n elements, $n \leqq m$.

This is only a trivial modification of the van der Waerden result [5, pp. 88, 121], appropriate since the condition subsequently also appears to be necessary (see (F)).

Lemma 1. If every submodul $\mathfrak{R}, 0<\mathfrak{R} \leqq \mathfrak{M}=u_{1} K+\cdots+u_{m} K$ has a basis of $n \leqq m$ elements, and \mathfrak{r} is a right ideal of $K, 0<\mathfrak{r} \leqq K$, then the submodul $\mathfrak{N}=u_{1} \mathfrak{r} \cup \cdots \cup u_{m} \mathfrak{r}$, consisting of all sums $\sum u_{i} \rho_{i}, \rho_{i} \in \mathfrak{r}$, has a basis $u_{11}, \cdots, u_{m 1}$ with $u_{1} r=u_{i 1} K, i=1, \cdots, m$, and $u_{i 1}$ is a basis for $u_{i} \mathrm{r}$.

For $0<u_{i} \mathfrak{r}=u_{i 1} K+\cdots+u_{i n i} K, 1 \leqq n_{i} \leqq m$, and $\mathfrak{n}=u_{1} \mathfrak{r} \cup \cdots \cup u_{m} \mathfrak{r}$ is a submodul for which the $u_{i j}$ together form a basis of $\sum n_{i}$ elements. The hypothesis of the lemma implies the ascending chain condition in \mathfrak{M}, and hence in K (by (A)). Hence by (C) the basis number for \mathfrak{N} is unique and $m \geqq \sum n_{i} \geqq m, n_{i}=1, i=1, \cdots, m$. Thus $u_{i} r=u_{i 1} \cdot K$.
(F) Let $\mathfrak{M}=u_{1} K+\cdots+u_{m} K$ be a vector space over K. Then every submodul $\mathfrak{N}, 0<\mathfrak{M} \leqq \mathfrak{M}$, has a basis of $n \leqq m$ elements, if and only if every right ideal $\mathfrak{r}>0$ in K is of type $\rho_{0} K$, where $\rho_{0} \alpha=0, \alpha \in K$, implies $\alpha=0$.

For if $\mathfrak{r}>0$ is a right ideal of K, by the lemma, $u_{1} \mathfrak{r}=u_{11} K, u_{11}=u_{1} \rho_{0}$, $\rho_{0} \in \mathfrak{r}$. Then $u_{1} \mathfrak{r}=u_{1} \rho_{0} K$ and $\mathfrak{r}=\rho_{0} K$. Moreover $\rho_{0} \alpha=0$ implies $u_{11} \alpha=0$ and $\alpha=0$.

Now suppose $\mathfrak{M}=u_{1} K+\cdots+u_{m} K$ is a vector space over a ring K of the type in (F). To every submodul $\mathfrak{N}, 0<\mathfrak{N} \leqq \mathfrak{M}$, corresponds a unique basis number $b(\mathfrak{R})$. Define $b(0)=0$.
(G) If $\mathfrak{M}=u_{1} K+\cdots+u_{m} K$ is a vector space over a ring K of the type in (F), the basis number $b(\mathfrak{N}), 0 \leqq \mathfrak{N} \leqq \mathfrak{M}$, is a positive modular functional [1, p. 40]:

M1. $b(\mathfrak{A} \cup \mathfrak{B})+b(\mathfrak{A} \cap \mathfrak{B})=b(\mathfrak{H})+b(\mathfrak{B})$,
M2. $\mathfrak{A} \leqq \mathfrak{B} \leqq \mathfrak{M}$ implies $b(\mathfrak{H}) \leqq b(\mathfrak{B})$.
M2 is clear from (F). A proof of M1 may be made by induction on $b(\mathfrak{H})$. We treat here only the following case:

Let K be a (noncommutative) domain of integrity in which every right ideal is principal. ${ }^{3}$ The vector space $\mathfrak{M}=u_{1} K+\cdots+u_{m} K$ may then be regarded as imbedded in the vector space $\mathfrak{M}^{*}=u_{1} \bar{K}+\ldots$ $+u_{m} \bar{K}$ where \bar{K} is the quotient quasi-field of K. The existence of \bar{K} follows from theorems developed by Ore [3, p. 466] and a proof by Teichmüller [4] that the least common multiple of nonzero elements in such a K is not zero. The correspondence

$$
(\gamma) \mathfrak{N}=v_{1} K+\cdots+v_{n} K \rightarrow \mathfrak{N}^{*}=v_{1} \bar{K}+\cdots+v_{n} \bar{K}
$$

is a well-defined correspondence on the lattice L of all K-submoduls of \mathfrak{M} to the entire lattice \bar{L} of \bar{K}-submoduls of \mathfrak{M}^{*}, (since \mathfrak{R}^{*} is independent of the \mathfrak{R}-basis). Observe that $b(\mathfrak{N})=b\left(\mathfrak{R}^{*}\right)$ as a submodul of \mathfrak{l}^{*}. For the K-independence of a basis (v_{1}, \cdots, v_{n}) of $\mathfrak{N i m p l i e s ~ t h e ~}$ \bar{K}-independence of v_{1}, \cdots, v_{n} : Let $\sum v_{i} \bar{\alpha}_{i}=0, \bar{\alpha}_{i}=\alpha_{i} / \beta_{i} \in K$ (Ore quotient) ; if μ is the (nonzero) least common multiple of the $\beta_{i}, \sum v_{i} \bar{\alpha}_{i} \mu=0$, and $\bar{\alpha}_{i} \mu \in K$ by the Ore theory referred to. Hence $\bar{\alpha}_{i} \mu=0$, and $\bar{\alpha}_{i}=0$, $i=1, \cdots, n$.

It is trivial to verify that:
(1) $\mathfrak{H} \geqq \mathfrak{B}$ implies $\mathfrak{A}^{*} \geqq \mathfrak{B}^{*}$.
(2) $(\mathfrak{Y} \cup \mathfrak{B}) *=\mathfrak{Y} * \mathfrak{B}^{*}$.
(3) $(\mathfrak{H} \cap \mathfrak{B})^{*}=\mathfrak{H}^{*} \cap \mathfrak{B}^{*}$.

For example, in (2) $(\mathfrak{H} \cup \mathfrak{B})^{*} \geqq \mathfrak{A}^{*} \cup \mathfrak{B}^{*}$ follows from (1). But every element in $(\mathfrak{H} \cup \mathfrak{F})^{*}$ is a \bar{K}-form in a K-basis of $\mathfrak{A} \cup \mathfrak{B}$, hence is in $\mathfrak{H} \mathfrak{Y}^{*}$. Since $b\left(\mathfrak{H}^{*}\right)$ is the dimension of \mathfrak{U}^{*} over \bar{K}, it follows that $b(\mathfrak{H})$ is a positive modular functional on L.

We may now apply the theory of such functionals [1, p. 42, Theorem 3.10] to show that $\delta(\mathfrak{A}, \mathfrak{B})=b(\mathfrak{H} \cup \mathfrak{B})-b(\mathfrak{H} \cap \mathfrak{B})$ is a quasi-metric on L :
(4) $\delta(\mathfrak{A}, \mathfrak{B}) \geqq 0, \delta(\mathfrak{N}, \mathfrak{Y})=0$.
(5) $\delta(\mathfrak{H}, \mathfrak{B})+\delta(\mathfrak{B}, \mathfrak{C}) \geqq \delta(\mathfrak{H}, \mathfrak{C})$.

The relation $\mathfrak{A} \sim \mathfrak{B}$ defined by $\delta(\mathfrak{H}, \mathfrak{B})=0$ is an equivalence relation, and the correspondence $\mathfrak{A} \rightarrow[\mathfrak{H}]$, the equivalence class containing \mathfrak{N}, is a lattice homomorphism of L onto the metric lattice L^{\prime} of equivalence classes. For want of a name, we call L^{\prime} the metric homomorph of L. However, in the correspondence $(\gamma), \mathfrak{H}^{*}=\mathfrak{B}^{*}$ if and only if $\mathfrak{A} \sim \mathfrak{B}$.
 since all these have the same dimension over \bar{K}. Conversely, if $\mathfrak{H}^{*}=\mathfrak{B}^{*}$, then $(\mathfrak{H} \cup \mathfrak{B})^{*}=\mathfrak{H}^{*}=(\mathfrak{H} \cap \mathfrak{B})^{*}, b(\mathfrak{H} \cup \mathfrak{B})=b(\mathfrak{H} \cap \mathfrak{B})$ and $\mathfrak{H} \sim \mathfrak{B}$.
(H) If K is a right principal ideal domain of integrity, quotient field

[^3]K, then the basis number $b(\mathfrak{N})$ is a positive modular functional on the lattice L of submoduls of $\mathfrak{M}=u_{1} K+\cdots+u_{m} K$, and the metric homomorph L^{\prime} of L is lattice isomorphic with the lattice of submoduls of $\mathfrak{M}^{*}=u_{1} \bar{K}+\cdots+u_{m} \bar{K}$.
4. Vector spaces over quasi-fields. We now typify vector spaces over quasi-fields by (I) and (J).

Remark. A ring $K=\{0, \alpha, \cdots\}$ with unit ϵ, whose only right ideal $\mathfrak{r}>0$ is K, is a quasi-field.

Let $\alpha \neq 0$. Then $0<\alpha K=K, \alpha \beta=\epsilon$. The right annihilator (right) ideal \mathfrak{r} of α is (0), for $\mathfrak{r}>0$ implies $\mathfrak{r}=K$, and $\alpha \epsilon=\alpha=0$. Hence $\alpha(\beta \alpha-\epsilon)=\alpha \beta \alpha-\alpha=\alpha-\alpha=0$ and $\beta \alpha=\epsilon$.
(I) Let $\mathfrak{M}=u_{1} K+\cdots+u_{m} K$ be a vector space. Then every submodul $\mathfrak{N}, 0<\mathfrak{N} \leqq \mathfrak{M}$, has a basis of $n \leqq m$ elements, with $\mathfrak{M}<\mathfrak{M}$ implying $n<m$, if and only if K is a quasi-field; that is, the modular functional $b(\mathfrak{N})$ on a vector space over a ring K of the type in (F) is sharply positive $[1, \mathrm{p} .41]$ if and only if K is a quasi-field.

These are well known properties of a vector space over a quasifield. If they hold, then by Lemma 1 , the existence of a right ideal \mathfrak{r}, $0<\mathfrak{r}<K$ implies $\mathfrak{N}=u_{1} \mathfrak{r} \cup \ldots \cup u_{m} \mathfrak{r}<\mathfrak{M}$ with $b(\mathfrak{N})=b(\mathfrak{M})$, contrary to hypothesis. Hence (I) follows from the remark above.
(J) Let \mathfrak{M} be a vector space over a ring K of the type in (F). Then \mathfrak{M} satisfies the descending chain condition if and only if K is a quasi-field.

For rings of this type, the descending chain condition in \mathfrak{M} and sharp positiveness of $b(\mathfrak{N})$ are equivalent. If $\mathfrak{A}<\mathfrak{B}$ with $b(\mathfrak{H})=b(\mathfrak{B})$, the transformation of \mathfrak{B}-basis into \mathfrak{A}-basis is of type (iii), on \mathfrak{B}.

References

1. G. Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, vol. 25, 1940.
2. T. Nakayama, Note on the elementary divisor theory, this Bulletin, vol. 44 (1938), pp. 719-723.
3. O. Ore, Linear equations in noncommututive fields, Annals of Mathematics, (2), vol. 32 (1931), pp. 463-477.
4. O. Teichmüller, Der Elementarteilersatz fïr nichtkommutative Ringe, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1937.
5. B. L. van der Waerden, Moderne Algebra, vol. 2, 1st edition, Springer, Berlin, 1931.

University of Michigan

[^0]: ${ }^{3}$ We have proved, incidentally, that if an everywhere dense subgroup \mathfrak{g} of a simple Lie group $G_{r}(r>1)$ contains an analytic arc, then $\mathfrak{g}=G$.

[^1]: Presented to the Society, September 5, 1941; received by the editors May 27, 1941.
 ${ }^{1}$ The results presented here were obtained while the author was Sterling Research Fellow in mathematics, Yale University, 1940-1941. Thanks are due to Professors Oystein Ore, R. P. Dilworth, and the referee for helpful suggestions.

[^2]: ${ }^{2} A^{\prime}$ means A transpose.

[^3]: ${ }^{3}$ For the elementary divisor theory of matrices over such domains, and references to the literature, see [2].

