ON INTEGRAL FUNCTIONS OF INTEGRAL OR ZERO ORDER

S. M. SHAH

Let F(z) be an integral function of finite order ρ . We write $F(z) = z^k e^{g(z)} f(z)$ where g(z) is a polynomial of degree $q \leq \rho$ and

$$f(z) = \prod_{1}^{\infty} \left\{ \left(1 - \frac{z}{a_n}\right) \exp\left(\frac{z}{a_n} + \cdots + \frac{1}{p} \left(\frac{z}{a_n}\right)^p\right) \right\}$$

is the canonical product of order ρ_1 and genus p. Let $M(r, F) = \max_{|z|=r} |F(z)|$ and n(r, F-a) = n(r, a) be the number of zeros of F(z) - a in |z| = r. In an earlier paper¹ I proved the following result.

THEOREM 1. If F(z) be of integral order ρ and if the genus of the canonical product f(z) be $p = \rho$, then

(1)
$$\liminf_{r=\infty} \frac{\log M(r,F)}{n(r,F)\phi(r)} = 0$$

where $\phi(x)$ is any positive continuous increasing function of the real variable x such that

(2)
$$\int_{a}^{\infty} \frac{dx}{x\phi(x)}$$

is convergent.

In this note I prove a similar result for the canonical products of order ρ and genus $p = \rho - 1$, and discuss whether the result can be extended to integral functions which are not canonical products. The main result is the following.

THEOREM 2. If f(z) is a canonical product of integral order ρ and genus $p = \rho - 1$ then

(3)
$$\liminf_{r=\infty} \frac{\log M(r, f)}{n(r, f)\Phi(r)} = 0$$

where $\Phi(x)$ is any positive increasing function such that

(4)
$$\int_{a}^{\infty} \frac{dx}{x\Phi(x)}$$

Received by the editors July 20, 1941.

¹ A Theorem on integral functions of integral order, Journal of the London Mathematical Society, vol. 15 (1940), pp. 23–31. I shall refer to this paper as (1).

is convergent and

$$(4.1) \qquad \Phi(x)/x^{\alpha}$$

is monotonic for all large x, say $x \ge \Delta > 0$; α a constant such that $0 < \alpha < 1$.

LEMMA 1. For all $r \ge r_0(A, \beta)$

$$J = \int_{\Delta_1}^r \frac{dx}{x^{\beta} \Phi(x)} < \frac{Ar^{1-\beta}}{\log r},$$

where A and Δ_1 are positive constants, and β is a constant such that $0 < \beta < 1$.

PROOF. From the convergence of the integral in (4), we have $\log x < \Phi(x)$ for all $x \ge \Delta_2$. Hence for $r \ge r_0$

$$J = \int_{\Delta_1}^{r^{1/2}} + \int_{r^{1/2}}^{r} \leq \frac{1}{\Phi(\Delta_1)} \frac{r^{(1-\beta)/2}}{(1-\beta)} + \frac{2}{(1-\beta)} \frac{r^{1-\beta}}{\log r} < \frac{Ar^{1-\beta}}{\log r} \cdot$$

LEMMA 2. Suppose that the real functions $\psi(x)$ and $\theta(x)$ satisfy the following conditions:

(1) $\psi(x)$ is continuous in (δ, ∞) where $\delta > 0$, except for isolated points where $\psi(x)$ has ordinary left-hand discontinuities.

(2) $\psi(x)$ is non-increasing as $x \ge \delta$ increases in any interval between two consecutive discontinuities.

(3) $\theta(x)$ is a positive continuous increasing function for $x \ge \delta$.

(4)
$$\limsup_{x=\infty} \psi(x) = \infty, \qquad \limsup_{x=\infty} \frac{\psi(x)}{\theta(x)} = 0.$$

Then we can find a sequence $\{x_n\}$ of values of x tending to ∞ such that the two inequalities

$$\begin{split} \psi(x) &\leq \psi(x_n), & x_1 \leq x < x_n, \\ \frac{\psi(x)}{\theta(x)} &\leq \frac{\psi(x_n)}{\theta(x_n)}, & x > x_n, \end{split}$$

are satisfied simultaneously.

If

The x_n are points of discontinuity so that $\psi(x_n) = \psi(x_n+0)$ and x_1 is the first point of discontinuity in (δ, ∞) .

The proof is similar to that of Lemma 2 of my paper referred to above, and is based on the following lemma of Pólya.²

$$l_1, l_2, l_3, \cdots, l_m > 0,$$

$$s_1, s_2, s_3, \cdots, s_1 > 0; s_{m+1} > s_m; m = 1, 2, 3, \cdots,$$

² Mathematische Annalen, vol. 88 (1923), p. 170.

330

[April

are two sequences of positive numbers, of which the second is monotonic and increasing, such that

$$\lim_{m=\infty} l_m = 0, \qquad \limsup_{m=\infty} l_m s_m = \infty,$$

then we can find an infinite sequence $\{n\}$ of the indices n such that the two sets of inequalities

$$\begin{split} l_n > l_{\nu}, & \nu > n, \\ l_n s_n > l_{\mu} s_{\mu}, & \mu < n, \end{split}$$

are satisfied simultaneously.

To prove Theorem 2 we first consider the case when

(5)
$$\limsup_{r=\infty} \frac{n(r, f)\Phi(r)}{r^{p+1}} > 0.$$

We have

$$(5.1) r^{p+1} < An(r)\Phi(r)$$

for an infinity of values $r = R_n$ tending to ∞ and so

$$\frac{\log M(R_n)}{n(R_n)\Phi(R_n)} < \frac{A \log M(R_n)}{R_n^{p+1}} \to 0 \qquad \text{as } n \to \infty.$$

Hence

$$\liminf_{r=\infty} \frac{\log M(r)}{n(r)\Phi(r)} = 0.$$

Suppose secondly that

(5.2)
$$\lim_{r=\infty} \frac{n(r)\Phi(r)}{r^{p+1}} = 0.$$

Here $\Phi(x)/x^{\alpha}$ must be monotonic decreasing, for if not $\Phi(x) \ge Ax^{\alpha}$, and so

$$\limsup_{r=\infty} \frac{n(r)\Phi(r)}{r^{p+1}} \ge A \limsup_{r=\infty} \frac{n(r)}{r^{p+1-\alpha}} = \infty,$$

contradicting hypothesis (5.2); so $\Phi(x)/x^{\alpha}$ is monotonic decreasing for $x \ge \Delta$. We apply Lemma 2 putting

$$\psi(x) = \frac{n(x)\Phi(x)}{x^{p+1-\beta}} = n(x) \frac{\Phi(x)}{x^{\alpha}} \frac{1}{x^{p+1-\alpha-\beta}},$$

and choosing $\theta(x) = x^{\beta}$, β a constant such that $0 < \beta < 1 - \alpha$, $\delta = \Delta$. The

conditions of Lemma 2 are satisfied, and hence, putting $x_n = R$ we obtain $x(n) \neq (n) = x(R) \neq (R)$

$$\frac{n(x)\Phi(x)}{x^{p+1-\beta}} \leq \frac{n(R)\Phi(R)}{R^{p+1-\beta}}, \text{ for } \Delta \leq x_1 \leq x \leq R,$$
$$\frac{n(x)\Phi(x)}{x^{p+1}} \leq \frac{n(R)\Phi(R)}{R^{p+1}}, \text{ for } x > R.$$

Thus for $R > x_1$,

 $\log M(R, f) < AI(R, f)$

$$= A \int_{0}^{\infty} \frac{n(x, f)}{x^{p+1}} \frac{R^{p+1}}{(x+R)} dx$$

$$\leq A \left\{ A_{1}R^{p} \int_{x_{1}}^{R} \frac{n(x)}{x^{p+1}} dx + R^{p+1} \int_{R}^{\infty} \frac{n(x)}{x^{p+2}} dx \right\}$$

$$\leq A \left\{ A_{1}R^{p} \frac{n(R)\Phi(R)}{R^{p+1-\beta}} \int_{x_{1}}^{R} \frac{dx}{x^{\beta}\Phi(x)} + n(R)\Phi(R) \int_{R}^{\infty} \frac{dx}{x\Phi(x)} \right\}$$

$$\leq A \left\{ \frac{A_{2}n(R)\Phi(R)}{\log R} + o(n(R)\Phi(R)) \right\}.$$

Hence

(6)
$$\liminf_{r=\infty} \frac{\log M(r,f)}{n(r,f)\Phi(r)} \leq A \liminf_{r=\infty} \frac{I(r,f)}{n(r,f)\Phi(r)} = 0$$

and this completes the proof of the theorem.

COROLLARY. If $F(z) = z^k e^{g(z)} f(z)$ is of integral order ρ and genus $g = \rho - 1$ then

(7)
$$\liminf_{r=\infty} \frac{\log M(r,F)}{n(r,f)\Phi(r)} = 0.$$

We have $g=\rho-1=\max(p, q)$. It is easily seen that $p=\rho-1$, $q\leq \rho-1$ and

(8)
$$\log M(r, F) < A \{r^{\rho-1} + \log r\} + \log M(r, f).$$

If

$$\limsup_{r=\infty} \frac{n(r, f)\Phi(r)}{r^{p+1}} > 0$$

then R_n being defined in (5.1),

332

$$\frac{\log M(R_n, F)}{n(R_n, F)\Phi(R_n)} < \frac{A\{R_n^{\mu-1} + \log R_n\}}{n(R_n, F)\Phi(R_n)} + \frac{\log M(R_n, f)}{n(R_n, f)\Phi(R_n)} \cdot$$

. 1

Hence

$$\liminf_{r=\infty} \frac{\log M(r,F)}{n(r,F)\Phi(r)} = 0.$$

If now

$$\lim_{r=\infty}\frac{n(r,f)\Phi(r)}{r^{p+1}}=0$$

then for all large r

$$\log M(r, F) < A \{ r^{\rho-1} + \log r \} + AI(r, f) < A_3I(r, f)$$

and hence from (6) the required result follows.

The condition (4) on $\Phi(x)$ is sufficient but not necessary³ for (3) and (7) to hold. The condition (4.1) is also not necessary for we can take $\Phi(x)$ to be any function

$$(l_1x)(l_2x) \cdots (l_{k-1}x)(l_kx)^{1+\eta}, \qquad \eta > 0,$$

of the logarithmic comparison scale, and hence any function for which

$$\liminf_{x=\infty} \frac{\Phi(x)}{(l_1x)(l_2x)\cdots(l_{k-1}x)(l_kx)^{1+\eta}} \ge A > 0.$$

We can take $\Phi(x)$ to be any positive L function⁴ which satisfies (4) but we cannot take $\Phi(x)$ (or $\phi(x)$ in Theorem 1) to be $(l_1x)(l_2x) \cdots (l_kx)$.

Consider for instance

$$f_1(z) = \prod_N^{\infty} \left\{ 1 - \frac{z}{a_n} \right\}, \qquad f_2(z) = \prod_N^{\infty} \left\{ \left(1 - \frac{z}{a_n'} \right) \exp\left(\frac{z}{a_n'} \right) \right\},$$

where

$$a_n = -n(l_1n) \cdots (l_kn)(l_{k+1}n)^2,$$

$$a_n' = n(l_1n) \cdots (l_kn)(l_{k+1}n).$$

The functions $f_1(z)$ and $f_2(z)$ are canonical products of order 1. The genus of $f_1(z)$ is 0, and of $f_2(z)$ is 1. For each of them we have

$$\lim_{r=\infty}\frac{\log M(r)}{n(r)(l_1r)\cdots(l_kr)}=\infty.$$

³ Cf. p. 4 of (1).

1942]

⁴ For definition see G. H. Hardy, Orders of Infinity, 1924, p. 17.

In what follows we shall take $\phi(x)$ to be a positive L function satisfying the condition (2).

Suppose now F(z) is of integral order ρ . There are four possibilities:

- (1) $\rho_1 < \rho, \ p \leq \rho_1, \ q = \rho,$ (2) $\rho_1 = p = \rho, \ q \leq \rho,$ (3) $\rho_1 = q = \rho, \ p = \rho - 1,$ (4) $\rho_1 = \rho, \ q < \rho, \ p = \rho - 1.$

Combining the above results we have in cases (2) and (4)

(9)
$$\lim_{r=\infty} \inf \frac{\log M(r,F)}{n(r,F)\phi(r)} = 0.$$

In cases (1) and (3), (9) does not hold.⁵ For functions of fractional order and zero order⁶ it certainly holds. In particular (9) is true for any canonical product of finite order; it also holds for functions of maximum or minimum type, order ρ .

It is known that if F(z) is of integral order ρ , then⁷

(10)
$$\liminf_{r=\infty} \frac{\log M(r,F)}{n(r,F-a)} < \infty$$

for every a, except possibly a single exceptional value of a. Since F(z)and F(z) - a belong to the same type, we deduce from (9) that if F(z) is of maximum or minimum type, order ρ , where ρ is an integer, then

(11)
$$\liminf_{r=\infty} \frac{\log M(r,F)}{n(r,F-a)\phi(r)} = 0$$

for every a. If F(z) is of mean type then (11) need not hold for one exceptional value of a. For example, ze^z and

$$e^{z}\prod_{2}^{\infty}\left\{1+\frac{z}{n(\log n)^{2}}\right\}$$

are both functions of mean type, order 1. For each of these two functions

$$\lim_{r=\infty}\frac{\log M(r,F)}{n(r,F-0)(\log r)^{3/2}}=\infty.$$

MUSLIM UNIVERSITY ALIGARH, INDIA

⁶ (1), pp. 29–30.

334

⁵ (1), p. 29.

⁷ G. Valiron, Lectures on the General Theory of Integral Functions, 1923, p. 86.