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Let F(z) be an integral function of finite order p. We write 
F{z) = zkegiz)f(z) where g(z) is a polynomial of degree qSp and 

zoo = n{(i - - W ( - + •. • + U-
i \\ aj \an p\On. 

is the canonical product of order pi and genus p. Let M{r, F) 
= max|2|==r | F(z)\ and n(r, F—a) =n(ry a) be the number of zeros of 
JF(Z) —a in \z\ — r. In an earlier paper11 proved the following result. 

THEOREM 1. If F(z) be of integral order p and if the genus of the 
canonical product f {z) be p=p, then 

log M(r, F) 
(1) lim inf — ^ — = 0 

r=00 n(r, F)<j)(r) 

where </>(x) is any positive continuous increasing function of the real 
variable x such that 

dx 
(2) f 

J a X(j)(x) 

is convergent. 

In this note I prove a similar result for the canonical products of 
order p and genus p —p — 1, and discuss whether the result can be ex
tended to integral functions which are not canonical products. The 
main result is the following. 

THEOREM 2. If f{z) is a canonical product of integral order p and 
genus p=p — l then 

log M(r, f) 
(3) lim inf — ^ - ^ = 0 

r=œ n(rff)$(r) 
where <£(#) is any positive increasing function such that 

/

dx 

a X$(x) 

Received by the editors July 20, 1941. 
1 A Theorem on integral functions of integral order, Journal of the London Mat he-

matical Society, vol. 15 (1940), pp. 23-31. I shall refer to this paper as (1). 
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is convergent and 

(4.1) $(x)/xa 

is monotonie for all large x, say x^A>0;aa constant such that 0 < a < 1. 

LEMMA 1. For all r^r0(A, (3) 

rr dx Arx~v 
J= - < - ; f Ax xP&(x) log r 

where A and Ai are positive constants, and j8 is a constant such that 
0 < / 3 < l . 

PROOF. From the convergence of the integral in (4), we have 
l o g # < $ ( # ) for all #^A 2 . Hence for r^r0 

/

•n/2 çr i rd-/3)/2 2 rl~^ Ar1"^ 

Al Jri/2
 = $(Ai) (1 - 0) (1 - 0) log r log r 

LEMMA 2. Suppose that the real functions yp{x) and d(x) satisfy the 
following conditions : 

(1) \f/(x) is continuous in (S, oo ) where ö > 0, except for isolated points 
where )p(x) has ordinary left-hand discontinuities. 

(2) \p(x) is non-increasing as x^è increases in any interval between 
two consecutive discontinuities. 

(3) 6{x) is a positive continuous increasing f unction f or x^ô. 
\j/(x) 

(4) limsup^(x) = oo, limsup = 0. 
£=oo 3=00 6{X) 

Then we can find a sequence {xn} of values of x tending to oo such 
that the two inequalities 

x[/(x) ^ iKa»)> *i = x < xn> 

*AO) IP*) 
^ ) X ^ Xn, 

6(x) e(xn) 
are satisfied simultaneously. 

The xn are points of discontinuity so that ${xn) =^(ffn+0) and Xi is 
the first point of discontinuity in (ô, oo). 

The proof is similar to that of Lemma 2 of my paper referred to 
above, and is based on the following lemma of Pólya.2 

if 
h, hi h, ' ' 

Slj $2i S3, • ' 

j 

> 

lm>0, 

si > 0; sm+i > sm; m = 1, 2, 3, • • • , 
2 Mathematische Annalen, vol. 88 (1923), p. 170. 
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are two sequences of positive numbers, of which the second is monotonie 
and increasing, such that 

lim lm = 0, lim sup lmsm = °°, 

then we can find an infinite sequence {n} of the indices n such that the 
two sets of inequalities 

In > h, v > n, 

InSn > IpSp, IX <n, 

are satisfied simultaneously. 

To prove Theorem 2 we first consider the case when 

n(ry f) <£(?-) 
(5) lim sup > 0. 

r=oo rp+1 

We have 

(5.1) rp+l <An(r)$(r) 

for an infinity of values r = Rn tending to oo and so 

log M{Rn) A log M(Rn) 
< > 0 as n —» oo. 

n(Rn)*(Rn) Rl+l 

Hence 
log M (r) 

lim inf = 0. 
r=oo n(r)$(r) 

Suppose secondly that 

n(r) §(r) 
(5.2) lim w w = 0. 

r=oo rp+1 

Here &(x)/xa must be monotonie decreasing, for if not <£(#) ^Ax", 
and so 

n(r)$(r) n(r) 
lim sup ^ A lim sup = oo, 

r=oo rp+l r=oo r
p+1~a 

contradicting hypothesis (5.2); so $(x)/xa is monotonie decreasing 
for x^A. We apply Lemma 2 putting 

n(x)$(x) <£(#) 1 ^,(#) — = nrx\ , 
sH-1-0 xa xp+l-a~t 

and choosing 6{x) =x^t j8 a constant such that 0 < j 8 < l — a , 8 = A. The 
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conditions of Lemma 2 are satisfied, and hence, putting xn = R we ob
tain 

n(x)$(x) n(R)$(R) 

X*>+l-P Rp+l-P 
- ; f or A ^ xi :§ x S R, 

xv+l RP+1 

Thus for R>xi, 

log M(R,f) <AI(R,f) 

n(x, ƒ) R?+l 

n(x)Q(x) n(R)$(R) 
<̂  , ior x > R. 

XP+I (x + R) 
tR n(x) r0 0 n{%) 

Jo 

£A<AiR*l — - d x + R*+l\ -^dx} 
{ J Xl X*+l JR X*+2 ) 
( n(R)$(R) rB dx r00 dx ) 

£A<AXR* + n(R)*(R) > 
\ Rp+i-e J91rf$(x) JRx$(x)f 

<AfA*n(R)H 
= I log R 

Xl x&$(x) J R x$(x)} 

^A\ V V ' +o(n(R)HR))} 
(A2n(R)$(R) ) 

Hence 

. r log If(r ,y) ^ , ,. ,£ I{rJ) 
(6) lim inf ^ 4̂ hm mf = 0 

r=oo n(ry f)$(r) r=«> n(ry f)$(f) 
and this completes the proof of the theorem. 

COROLLARY. If F(z)=zke0(z)f(z) is of integral order p and genus 
g = p — 1 /Aew 

log M(r, F) 
(7) lim inf — ^—^ = 0. 

r=oo n(r,f)$(r) 

We have g=p — l = m a x (£, #). I t is easily seen that p=p — l, 
qSp — 1 and 

(8) log J£(r, F) < 4 {f-1 + log r) + log Jf (r, ƒ). 

If 
n(rtf)$(r) 

lim sup > 0 
r = 0 0 ^ r P + i 

then Rn being defined in (5.1), 
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log M(Rn, F) A{Kn + log i?n} log M (Rni ƒ) 

n(Rny F) $(Rn) n(Rn, F) 3>(#n) n(Rni ƒ) $(£») 

Hence 
. log M(r,F) 

lim inf = 0. 
r=oo n{r,F)^{r) 

If now 
n(rff)Q(r) 

lim = 0 

then for all large r 

log M(r, F) < A {r>-1 + log r} + AI(r, ƒ) < i48/(f, f) 

and hence from (6) the required result follows. 
The condition (4) on <£(#) is sufficient but not necessary3 for (3) and 

(7) to hold. The condition (4.1) is also not necessary for we can take 
<£(#) to be any function 

(hx)(l2x) • • • {h~iOc){hx)l+ri, f\ > 0, 

of the logarithmic comparison scale, and hence any function for which 

$( x) 
lim inf — ^ A > 0. 

s=oo (Jix)(hx) • • • (h-ix)(hx)l+v 

We can take $(x) to be any positive L function4 which satisfies (4) 
but we cannot take $(x) (or <f> (x) in Theorem 1) to be (hx) (hx) • • • (hx). 

Consider for instance 

AW = n{i - - 1 , ƒ,(,) = n{( i - -V) exP (-V)}, 
where 

an = — »(Zi») • • • (hn)(h+in)2, 

a,! = »(/i») • • • (hn)(h+in). 

The functions ƒ 1(3) and/2(0) are canonical products of order 1. The 
genus of ƒ 1(2) is 0, and of f2(z) is 1. For each of them we have 

log M(r) 
lim 

= 00 n(r)(hr) • • - (lkr) 

3 Cf. p. 4 of (1). 
4 For definition see G. H. Hardy, Orders of Infinity, 1924, p. 17. 



334 S. M. SHAH 

In what follows we shall take <j>(x) to be a positive L function satis
fying the condition (2). 

Suppose now F(z) is of integral order p. There are f our possibilities : 

(1) pi < p, p S pu q = Pi (2) Pi = p = p, q ^ p, 

(3) pi = q = p, £ = p - 1, (4) Pl = p, q < p, p = p - 1. 

Combining the above results we have in cases (2) and (4) 

log Mir, F) 
(9) lim inf — = 0. 

r=oo n(r,F)<j)(r) 
In cases (1) and (3), (9) does not hold.5 For functions of fractional 

order and zero order6 it certainly holds. In particular (9) is true for 
any canonical product of finite order; it also holds f or f unctions of maxi
mum or minimum type, order p. 

I t is known that if F(z) is of integral order p, then7 

log Mir, F) 
(10) lim inf — < oo 

r« oo n(r, F — a) 
for every a, except possibly a single exceptional value of a. Since F(z) 
and F(z)—a belong to the same type, we deduce from (9) that if 
F(z) is of maximum or minimum type, order p, where pis an integer, then 

log M{r, F) 
(11) lim inf — = 0 

r=oo n(r,F — a)4>{r) 
for every a. If F{z) is of mean type then (11) need not hold for one ex
ceptional value of a. For example, zez and 

e *n/ 1 + ——\ 
2 I «(log n)2) 

«(log n)2 

are both functions of mean type, order 1. For each of these two func
tions 

log M(r, F) 
lim 
r=oo n(r,F - 0)(logr)3 '2 
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6 (1), P. 29. 
* (1), pp. 29-30. 
7 G. Valiron, Lectures on the General Theory of Integral Functions, 1923, p. 86. 


