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it would be quite easy to use various topics treated in the book in a 
course, whose main interest is not integral operators. One might men
tion, the Riemann-Stieltjes integral, functions of bounded variation, 
methods of summation of series, positive definite series, the moment 
problems, Bernstein's theorem, the Tauberian theorems, the prime 
number theorem, the Laguerre polynomials, the notion of a positive 
definite kernel of an integral equation, and the specific integral equa
tions mentioned. 

Thus the author has presented us with a treatise on a branch of 
analysis of great importance and whose applications are of wide inter
est. The book is extremely satisfactory, when concerned with either 
its principal topics or the other related developments and one is con
fident that it will have a most valuable effect both on research and 
graduate study. 

F. J. MURRAY 

Mathematical Methods in Engineering. By Theodore von Karman 
and Maurice A. Biot. New York, McGraw-Hill, 1940. 12 + 505 
pp. $4.00. 

This book by two masters of applied mathematics selects certain rep
resentative groups of advanced engineering problems and presents the 
appropriate mathematical methods of solution, together with helpful 
excursions into purely mathematical topics. This is a very effective 
plan that might well be followed by future books in applied mathe
matics. The problems are largely in mechanics and are interesting, 
instructive and up-to-date, especially those on the airplane—as might 
be expected from the interests and accomplishments of the senior 
author. 

Besides the problems worked out in the text, each chapter includes 
a set of problems of graded difficulty to be worked out by the stu
dent, the answers being given at the end of the book. Each chapter 
opens with a thought-provoking quotation from an authority in the 
field and ends with a well selected list of references, mostly standard 
texts. 

The authors are as careful with their mathematics as with their 
physics and engineering, but have chosen to omit mathematical 
proofs in many cases where they felt tha t space was not available. 
It seems to the reviewer that in some of these cases a t least a brief 
outline of the proof could have been given to the advantage of the 
reader. 

Chapter I is a direct, clear introduction to ordinary differential 
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equations. Numerical solutions are properly emphasized; but the 
step-by-step method given is not the most suitable for ordinary 
engineering purposes. This method involves the calculation of several 
initial values by a Taylor series, and so is not applicable to differential 
equations with empirical coefficients, which are very common in 
engineering. Furthermore, it is based on an elaborate difference 
table, which means tedious calculations and requires equal steps in 
the argument. The latter limitation makes it unsuitable for a function 
whose derivative varies over a wide range and inapplicable where the 
derivative becomes infinite. (Actually the example worked out on 
on p. 19 could have been done with less work by using the Taylor 
series throughout.) Numerical methods for systems of first-order 
differential equations (including single higher-order differential equa
tions) are not given, although these are common in engineering. 

Simpson's rule is given as the preferred method for numerical 
quadrature; and an example on p. 6 shows that it gives 5-digit ac
curacy as compared with 2-digit accuracy for the simple trapezoidal 
rule. However, the inaccuracy of the trapezoidal rule is mainly due to 
lack of end corrections: if the single correction term (l/12)h2f(x)\l is 
included, the trapezoidal rule here gives 7-digit accuracy. (This 
correction term is the first of a series in the Euler summation formula; 
it can also be derived geometrically from the assumption that the 
integrand ƒ (x) is sufficiently approximated by a parabolic arc.) In the 
reviewer's opinion, Simpson's rule should be abandoned as not giving 
the best approximation obtainable from a given set of values. 

On p. 7, it is stated that by means of isoclines a step-by-step solu
tion of Dxy =ƒ(#, y) can always be obtained "provided that f(x, y) 
is a single-valued continuous function of x and y." The implication 
that a unique solution can be obtained is incorrect because the Lip-
schitz condition has been disregarded. For example, the right-hand 
member of the equation Dxy = 3y1/2 —x, with y112 restricted to positive 
values, is single-valued and continuous at (0, 0) but there is an in
finity of solutions starting at this point, given by yl,2~x-\-C — 
{Cx+C2)1'2. 

Chapter II treats of Bessel functions as the solutions of Bessel's 
equation. The power series are derived by the method of undeter
mined coefficients, without a test for convergence nor a proof that 
the series actually satisfies the differential equation, although the 
method of successive substitution (or its operational equivalent) 
would both be shorter and would provide a remainder permitting 
rigorous treatment. Contour integrals are not employed ; so no proof 
is given for the relations between the coefficients of the converging 
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and the asymptotic series. However, the description of the properties 
of the Bessel functions is good and is illustrated by helpful graphs. 
Also there are given various common equivalent forms of Bessel's 
equations, with their solutions. The notation used is that of Watson. 

Chapter III is devoted to the fundamental concepts of dynamics 
and includes Lagrange's equations in generalized coordinates. It 
starts with Newton's laws of motion and later derives the principle 
of conservation of energy for a mechanically conservative system. 
This is the classical approach; but, inasmuch as conservation of 
energy is the most basic principle of all physics, it would seem sounder 
philosophically to start with it as an experimental fact (as the re
viewer has done for some years in his physics classes). Newton's 
third law of motion is, in fact, essentially a statement of conservation 
of energy as applied to mechanical systems—that when a body A 
exerts a force on a body B, the energy taken out of A in a joint dis
placement of the two bodies is equal to the energy put into B. (As has 
been recognized by Kelvin and Tait, Newton, in the Scholium follow
ing the enunciation of his laws, implicitly anticipated the concepts 
of energy and power.) 

Newton's second law is given in the form F—Dtmv and reference 
is made to the fact that m as well as v may be variable. This general
ization, however, is treacherous: it applies, for example, to a falling 
raindrop whose mass is increasing by accretion from water vapor; 
but it does not apply to a leaking water bucket, where the correct 
form is F = mDtv, even though m is varying. 

Theorems are worked out for mass points (particles) ; and it is then 
stated without proof (p. 93) that they also apply to continuous fluid 
and elastic bodies. This is taking a big jump. Had energy been used 
from the start, all theorems could have been proved rigorously. 

Much of the development in this chapter is in vector notation, 
including scalar (•) and vector (X) products. 

Chapter IV discusses various problems in dynamics and includes 
two purely mathematical discussions: (1) elliptic integrals, intro
duced to express the motion of a pendulum ; and (2) the singularities 
of first-order differential equations. Both of these discussions are 
clear and interesting and they gain by their association with im
portant physical problems. 

Chapter V is on the small oscillations of conservative systems and 
employs the Lagrange equations. In connection with the numerical 
calculation of natural frequencies, the following methods of finding 
the real roots of algebraic equations are given: Newton's, iteration, 
Graeffe's. Matrices are also introduced to find the frequencies and 
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the normal modes by successive approximations. The only matrix 
manipulation used is the product of a square matrix by a column 
matrix ; and no proof is given for the rule. 

In Chapter VI, small oscillations of non-conservative systems are 
taken up; and dynamic stability is treated, calling for the calculation 
of the complex roots of algebraic equations with real coefficients. 

Chapter VII discusses the differential equations of various con
tinuous structures, such as strings and beams, with and without uni
formly distributed elastic restraints. Harmonic vibration is shown 
to lead to the same forms of equation as these elastic restraints. 
Other problems considered are the buckling of uniform and tapered 
columns and the combined axial and lateral loading on the spar of an 
airplane wing. 

In Chapter VIII , the Fourier series and integral are applied to con
tinuous structures. I t is shown that the Fourier coefficients give the 
best approximation to an arbitrary function, for a terminated trigono
metric series, and that the mean-square error steadily decreases as 
terms are added. Sufficient conditions for convergence are stated 
without proof; and the Gibbs phenomenon is described. Numerical, 
graphical and mechanical methods for determining the coefficients 
are described. This chapter also discusses the Rayleigh-Ritz method 
of approximating natural frequencies and characteristic functions, 
applying it to trigonometric series. 

Chapter IX applies complex numbers to periodic phenomena, both 
mechanical and electrical. The concept of impedance is properly 
emphasized, but unfortunately two kinds of mechanical impedance 
are used, force/displacement and force/velocity ; and the former is 
preferred, although it is not the analogue of electrical impedance. 
This confusion is quite unnecessary, as the two impedances are re
lated simply by the factor too. For arbitrary impressed forces or 
voltages, the Fourier series is introduced in complex form. 

Chapter X is devoted to the Heaviside operational calculus, which 
is applicable to linear differential equations (ordinary or partial) 
with constant coefficients. Various procedures have been used for 
establishing the methods of this calculus: (a) the direct operational 
approach; (b) Fourier integrals and transforms (or the equivalent 
Laplace transform) ; (c) the Bromwich contour integral ; and (d) 
Carson's integral equation. Of these, procedure (a) is the simplest for 
ordinary differential equations, which is as far as this chapter goes: 
it involves only the separation of rational functions of the derivative 
operator D into partial fractions and the use of the single evaluating 
formula (D -a)-«-lDH{t) = (t«/q\)eatH(t), where H(t) is the Heaviside 
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function or unit-step function. If the operand consists of terms of the 
form tq€atH(t), it can be put back into operational form by using this 
formula backwards, after which partial fractions are applied to the 
resulting combined operator. If the operand f(t) has another form, 
any rational operation g(D)f(t) is evaluated as a single integral by 
the superposition formula g(D)f(t) =fl«>f(r)g(D)DH(t—r)dr. The 
proofs of these formulas and of the legitimacy of the algebraic 
manipulation of the operators are simple by the direct operational 
approach, making use of the principle characteristic of the Heaviside 
operational calculus, that the operands ƒ (t) are zero for all sufficiently 
negative values of / (commonly for all / < 0 ) . This is a natural con
dition in many engineering problems and can be introduced arti
ficially in other cases, for example where the physical operand is not 
defined for £<0. 

The book under review unfortunately uses more difficult pro
cedures, first employing the Fourier integral and leading up to the 
Bromwich integral and then proving the operational formulas by 
Carson's integral equation. The symbol p is confusingly used both as 
a complex variable and for the derivative operator D. [it is a common 
misconception that there is a distinction between inverse functions of 
Heaviside's p and of D, which arose from a failure to restrict operands 
as in the preceding paragraph. With such restriction and with D~l 

defined as ƒ i «*, all functions of D become perfectly definite and com
mutative with one another; and no reason remains for a special 
symbol in place of the ordinary D.] The awkward italic l(t) is used 
for the Heaviside function H(t) ; and S{i) is used for the unit impulse 
function, which is better represented as DH(t), since D~lS(t) =H(t). 
These methods and usages, of course, are found commonly in the 
literature ; but they seem to be delaying the incorporation of the very 
valuable Heaviside calculus into the current stream of mathematics. 

A too little appreciated branch of applied mathematics is intro
duced in Chapter XI , the calculus of finite differences. However, the 
method used is that of assuming the form of a solution and finding 
the constants which satisfy the given difference equation and the 
given conditions. This is a field to which operational methods are 
particularly applicable, especially in a form analogous to the Heavi
side operational calculus for differential equations, the evaluating for
mula being(1 -aE-1)-*-1^ -E~l)H{t) = [(t+1) • • • (t + q)/q\]a+H(t), 
now where E is Boole's operator defined by E~lf(t) =f(t) — 1 and H(t) 
equals 0 for negative integer t and equals 1 for zero and positive 
integer /. The problems include deflections of continuous beams 
supported at equal intervals, the buckling of a rectangular 
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lattice truss, voltage distribution in a suspension insulator, critical 
speeds of a multicylinder engine, leading to a mechanical wave filter, 
and electric wave filters. (In the last, an attenuator is incorrectly 
called a "wave trap," which is a resonant element.) 

Following the chapters appears a short section entitled "words and 
phrases" intended to give certain "strictly mathematical definitions" 
and starting with Kronecker's dictum, "God made the integers; all 
the rest is the work of man." It seems surprising to have this dictum 
endorsed by engineers and physicists : it might better be replaced by 
the statement, God made both discrete and continuous physical quan
tities ; man devised means {integers and real numbers) for representing 
them. This section in general seems out of place and of little help to a 
reader who would be capable of using the book. 

Besides a few obvious typographical errors, the reviewer noticed 
the following errors: last equation, p. 108, a minus sign should pre
cede the first term in each member; the answer to Problem 12, p. 108, 
has the inequality reversed; the answer to Problem 16, p. 109, not 
only uses k for K but incorrectly gives a stable solution; the first 
answer to Problem 1, p. 210, incorrectly has the factor 1/2 ; the equa
tion on p. 131 is written as if / were under the radical sign. (It is un
fortunate that radical signs are used in place of fractional exponents 
throughout the book.) 

This is a book which should be in the library of every engineer 
who is interested in the analytical development of his subject. It 
should be studied by mathematicians who are willing to admit that 
their place in society may need justification on other than purely 
intellectual grounds. It is well adapted as a text or for collateral 
study in an advanced course in applied mathematics or in theoretical 
mechanics. The authors are to be congratulated in so competently 
supplying a real need. 

ALAN HAZELTINE 

Development of the Minkowski Geometry of Numbers. By Harris Han
cock. (Published with the aid of the Charles Phelps Taft Memorial 
Fund and of two Friends.) New York, Macmillan, 1939. 24 + 839 
pp. $12.00. 
Professor Hancock says in the introduction of his book: "In 

every subject that occupies the human mind, be it history, philosophy 
law, medicine, science, music, etc., there arise outstanding men who 
evince an innate genius in their special fields, an innateness that seems 
as it were of divine origin. Minkowski was one of the great mathe
maticians of all time." I t is the aim of Hancock's book to make an 


