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Tables of the Moments of Inertia and Section Modulus of Ordinary 
Angles, Channels and Bulb Angles with Certain Plate Combinations. 
New York, Works Projects Administration, 1941. 13 + 197 pp. 
$1.25. 
These tables are a result of a suggestion of the U. S. Bureau of 

Marine Inspection and Navigation, which is now a part of the Navy 
Department. The most important entries in these tables are the mo
ments of inertia and the section moduli of rectangular areas with ad
jacent L-, T- or C-shaped areas (called, respectively, "angles" for the 
L- and T-shape and "channels" for the C-shape, the word "bulb 
angle" being reserved for an L-shaped area with a lateral circular 
swelling at the top). Both moments of inertia and section moduli are 
taken with respect to the neutral axis of the whole area parallel to 
the larger side of the rectangle. These entries were calculated by 
means of the parallel axis theorem, and the tables of the U. S. 
Steel Corporation were used for the moments of inertia and for the 
position of the centroid of the "angles" and "channels." The dimen
sions of the areas (or "sections" as they are technically called) which 
we find in these tables correspond to the commercial types, and—as 
one would expect—the tabular entries are not appropriate for dif
ference checking. However, the accuracy of the values was insured 
through independent computing by two groups of workers, and was 
checked by graphing the entries. The calculations are carried out to 
two decimal places for small entries and are limited to integer digits 
for large entries (the units being in.4 and in.3). The arrangement of 
the tables is simple and handy, and the photo-offset reproduction 
gives them a very clear appearance. This publication will certainly 
be appreciated by many engineers. 

I. OPATOWSKI 

The Mathematical Papers of Sir William Rowan Hamilton. Vol. II. 
Dynamics. Edited for the Royal Irish Academy by A. W. Conway 
and A. J. McConnell. (Cunningham Memoir, no. 14.) Cambridge 
University Press; New York, Macmillan, 1940* 15 + 656 pp. 
This volume contains Hamilton's work on dynamics and some in

vestigations in optics. The period covered is, with two or three minor 
exceptions, that from 1833 to 1839. Except for a few short abstracts 
of papers read by Hamilton, most of the material presented has never 
before been published, and consists in the main, of a transcript of 
Hamilton's original work books and some scientific correspondence. 
The editors have added a few footnotes and some short explanatory 
material at the end of the volume. 
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The material is divided into three parts. A short introduction 
sketches the plan of the work and the nature of the problems investi
gated. The two hundred and eighty pages of Part I are devoted to 
dynamics and correspondence with Lubbock. Part II, consisting of 
some hundred pages, is devoted to the calculus of principal relations. 
Part I I I concerns itself with optical investigations and correspond
ence, and comprises some hundred and seventy pages. Also included 
in this volume are a thirty-two page appendix, contributed by the 
editors, and a very complete index. 

The underlying idea in Part I is the determination of a single 
function whose partial derivatives will yield complete information 
about the trajectories. Hamilton uses at first the action function 
JlTdt and applies it to the three body problem. In order to obviate 
the bothersome transformations that arise in considerations of the 
time, he perceives the advantage of using the principal function 
S = fLdt and indicates other alternative functions. I t is in these in
vestigations that the notion of varying action, the so-called canoni
cal equations, and the Hamilton-Jacobi equation first come in as ob
servations on the special dynamical situations treated, though, cur
iously enough, Hamilton makes no use of the canonical equations. 

However, Hamilton requires that S satisfy a system of two partial 
differential equations, namely, the usual Hamilton-Jacobi equation 
and the corresponding equation where the differentiating variables 
are the initial coordinates and initial time. Now, at least when the 
force potential is independent of the time, the second equation is 
automatically satisfied whenever the first is, and Hamilton's lack of 
realization of this fact, quite obviously prevents him from making 
full application of the method. It is of course well known that it was 
only with Jacobi's recognition of this defect that the Hamiltonian 
method established its fundamental significance. (Apart from meth
odological novelty, Hamilton's dynamical and astronomical applica
tions succeed only in verifying previously known computations.) 
Nevertheless in special cases Hamilton obtains an explicit principal 
function S and indicates an interesting method for this purpose. A 
complete integral F( • • • a;» • • • ; • • • a»- • • • , / ) of the Hamilton-
Jacobi equation is a principal function if 

(la) F( • • • Xi • • • ; • • • a{ • • • ; t0) = 0 

and 
V / / %i — ai 

( l b ) Lt^t0 = Lt^to[L\ • • * &% • ' ' » • ' • • • ; *o 
t — *o \ \ t — h 
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essentially Lt^tA — V — Lj — 0. 

Hence suppose 

(2) V = £ Vt 

where F i s homogeneous of degree i in Xi — ai, t — t0. We may substitute 
(2) in the H.J. equation and expand H{ • • • # » • • • • , dV/dxi • • • , t) 
about Xt, to. On equating the linear and the quadratic terms, and 
so on, separately to zero, there results an infinite system of equations. 
The equation corresponding to terms of order n contains only Vj, 
i S j = w. On making use of (1) it is not difficult to show that 
the succeeding Vn

ys may be calculated step by step in terms of V\. 
There are also some developments of perturbation and approx
imation methods for the determination of S. 

The most ambitious appendix, quoted from a paper published by 
the editors, is devoted to the determination of the principal function 
from the knowledge of a complete integral of the H.J. equation. 
This is actually of slight importance, however, for it is well known 
that any complete integral determines the trajectories. Indeed (la) 
suggests writing 5 = V— F0 , F 0 = F( • • • # ? • • • , • • • a» • • • , /0), and 
then the modification of the usual procedure replacing bi = dV/ddi 
by 3 V0/dai = dV/dai for the elimination of the at s yields the principal 
function S( • • • # » • • • , • • • # ? • • • , / , /0). 

Also in Part I is an ingenious derivation of the angular dependence 
of the resultant of two forces. The problem is reduced to the de
termination of an additive function ƒ on the real numbers. Hamilton's 
argument to show f(x) is linear and actually x overlooks the Hamel 
functions, but can readily be made rigorous. 

The extensions of the dynamical methods, utilizing a principal 
function or relation, to arbitrary first and higher order partial dif
ferential and Mongean equations and systems, constitute the calculus 
of principal relations taken up in Part II . The following is typical. 
Consider 

/ dkix{ dkiXi \ 
(3) fa ( xu • • • — 7 - ; • • • ; * » • • • • - — - y - • • ; • • • 1 = 0, 

\ dth* dtki I 
G — 1, • • • m\ i — 1, • • • n. 

We associate with (3) the auxiliary equations of the calculus of 
variations. For instance with (r = l, ki = k we have for a suitable 
choice of X 
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df d df , x* d* df k d"xi 
(4) X— X — + • • • + ( - ! ) X — = 0 , *< = 

ôa;,- dt d±i dtk dx\ dtk 

Consider now 

(5) 0-/J(v-f")*-7-
In view of (4) we may express the right side of (5) as a sum of terms 
of the form 

( d<* / df \dP-<* ) I' 
(6) S ( - l ) a ( X — — ) (5xi-xM)}\ . 

If j?( • • • ; xt • • • d^Xi/dt*-1; • • • ; • • • ; a.- • • • a/*"1); • • • t,t0)=0 
is the principal relation, then 57^ = 0 is a consequence of (5) and hence 

(7) OF = fjj = 0, 

the central relation of this calculus. On equating the coefficients of 
the independent variations in (7) to 0 making use of (4), there arise 
auxiliary equations denoted by (8) for the partial derivatives of F 
with respect to XiU) and x?'(?) involving X and /x also. When k = l 
elimination of X, i from these equations and (1) yields a dif
ferential equation for F and the equations (8) lead essentially to the 
bicharacteristics. For k > 1 Hamilton indicates merely how the princi
pal relation may be obtained. Thus to the equations (4) may be 
added a set of mn further equations obtained by replacing the left 
side of (4) by ith derivatives ( i = l , • • • , n) with respect to / .Then 
by successive eliminations we arrive at a single relation of the form 
specified above. Hamilton apparently did not at tempt to determine 
the partial differential equation satisfied by F for k > 1 and indeed 
the utility of the principal relation for higher order partial and Mon-
gean equations is somewhat obscure. I t would seem of interest to 
pursue these investigations. 

The title assigned by the editors to Hamilton's treatment of higher 
order partial differential equations implies use of the principal rela
tion but this is not clear from the text. He is led to relations obvi
ously connected with the characteristic and bicharacteristic equa
tions usually ascribed to Cauchy, Backlund, Goursat and Beudon 
and there seems to be some contact with Hamburger's investigations. 
However apart from the first order systems the results are incomplete 
and no account is taken of the,elementary distinction between the 
elliptic, hyperbolic and parabolic cases. 
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The material on optics is perhaps of greatest interest. The propaga
tion of disturbances may be taken up from two viewpoints. The first 
considers a compatible wave train already existing in the entire 
medium. Hamilton's interest is in the second viewpoint, namely that 
of the spreading of an originally localized disturbance. The typical 
problem is that of a collection of equi-spaced particles arranged over 
the entire x-axis and it is supposed that each particle acts only on its 
two adjacent neighbors. 

The mathematical equivalent is the equation in mixed differences 

A2 

ytt — a2 y = 0, Ay(x, t) = y{% + 1 , 0 — y(x, 0 
1 + A 

subject to the initial conditions 

y(x, 0) = 0 or 77(1 — cos 2vx) 

yt(x, 0) = 0 or — 2arj sin v sin 2vx 

for x<0 and x^O, respectively. If instead y(x, 0) and yt(x, 0) vanish 
identically outside a finite interval, the conclusions are essentially 
unaffected. In treating these problems Hamilton makes incidental 
use of tools of modern appearance. For instance he uses the Fourier 
integral with the Sommerfeld weighting factor, the Abel summa-
bility of the Laplace integral, the Heaviside operator p~l, and various 
operational manipulations, the Riemann-Lebesgue lemma, the 
method of stationary phase in conjunction with repeated use of the 
Dirichlet discontinuous integral (and incidentally obtains the leading 
term in the asymptotic expansion of the Bessel's function). If a, rj are 1, 
then the nub of the analysis is the investigation of the properties of 

1 r * sin (2x0 - 2t sin 0) 
— (sin v)2 d$. 
2-K Jo sin 0(cos 0 — cos v) 

Assuming / large and positive, the results may be roughly summarized 
as follows. Let M and N be certain sufficiently large constants. Then 
for # ^ / + (l/2)M/1 / 3 , y is sensibly 0. As x decreases y takes on a pure 
displacement whose value is ( l /3) / (cos v/2)2 for x = t and rises to 
(cos v/2)2 for I : tcos v +(1/2)N(tsinvy2^x^t-(1/2)Mit1'*. The 
displacement of amount (1/3) (cos v)2 travels with unit velocity. 
As x decreases still further an oscillatory disturbance sets in. Thus 
in the range I I : - / + ( l /2)ikf/1 / 3^x^/cos v-(l/2)N(tsin v)U2, y = 
(1—cos 0 —(sin v/2)2, <f> = 2vx — 2t sin v. This is a copy of the initial 
disturbance shifted to a new mean position. In the transition region 
linking I and II the disturbance is a shifted, uniformly attenuated 
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copy of the original. With further decrease in x, the effect is merely 
to change the mean position of the vibrations and for I I I : 
x ^ — t — (1/2)M/1/3, y = cos 4>. Hamilton adopts the view that it is the 
region of oscillatory disturbance that is significant. He chooses the 
value x = t cos v in the transition region T between I and II for the 
wave front. Here y = (1/2)(1 — cos </>+cos v) and cos v is a dispersive 
(group) velocity. This is not altogether capricious, for with increasing 
t the velocity throughout T approaches cos v, and the ratio of the 
size of T to the time approaches zero. 

I t has not been realized that the modern work on the transient 
phenomena in the propagation of waves in continuous media by 
Sommerfeld, Brillouin, and Colby is anticipated in these researches. 
(Even the reference to the published abstract of Hamilton's work, 
in Havelock's well known Cambridge tract, overlooks this fact.) 
There is moreover a marked parallelism in the methods, the 
stationary phase calculations being superseded by the more delicate 
saddle point evaluations. Actually, the adoption of a discrete rather 
than a continuous medium has certain advantages in indicating 
more intuitively the nature and genesis of the conclusions. Hamilton 
extends his work to two-dimensional and three-dimensional problems 
using the now familiar Cauchy-Fourier integral methods, and gives 
the explicit general formula for the group velocity. 

The editors have obviously presented a most felicitous and careful 
rendering of Hamilton's work. However, it would seem desirable in 
collections of hitherto unpublished material to give a succinct sum
mary of the details of (a) methods and (b) results in modern ter
minology and, wherever possible, (c) some indication of the present 
status of the field covered. The editors have made an at tempt in this 
direction for (a) and (b), particularly as regards the dynamical 
papers, but the appendices and footnotes, could, with profit, be ex
panded considerably. The viewpoint and incomplete character of 
many of the investigations may well attract the attention of mathe
maticians ordinarily unconcerned with the historical development of 
mathematics. 

D. G. BOURGIN 


