EXPANSIONS OF QUADRATIC FORMS

RUFUS OLDENBURGER

1. The problem. A quadratic form Q with coefficients in a field K, whose characteristic is different from 2, is usually given as a linear combination

$$
\begin{equation*}
\sum_{t=1}^{n} a_{i j} x_{i} x_{j} \tag{1}
\end{equation*}
$$

of products $\left\{x_{i} x_{j}\right\}$, where $\left(a_{i j}\right)$ is symmetric. The sum (1) is one of the type

$$
\begin{equation*}
\sum_{i=1}^{\tau} L_{i} M_{i}, \tag{2}
\end{equation*}
$$

where the L 's and M 's are linear forms. In general the decomposition (1) is not the most economical way of writing Q as a sum of the type (2) in the sense that τ is a minimum for Q. In treating algebras associated with quadratic forms E. Witt ${ }^{1}$ showed that the form Q is equivalent under a nonsingular linear transformation to a decomposition

$$
\begin{equation*}
\sum_{i=1}^{\sigma} y_{i} z_{i}+\sum_{i=1}^{r-2 \sigma} \nu_{i} u_{i}^{2}, \tag{3}
\end{equation*}
$$

where the last sum is a nonzero form, and r is the rank of Q. In the present paper we shall show that the minimum τ for Q is $r-\sigma$. Thus this minimum τ is determined by the rank r and the "characteristic" σ of Q. This characteristic ${ }^{2}$ is the maximum number σ of linearly independent linear forms $L_{1}, \cdots, L_{\sigma}$ such that the rank of $Q+\lambda_{1} L_{1}^{2}+\cdots+\lambda_{\sigma} L_{\sigma}^{2}$ is the same as the rank of Q for all values of the λ 's. The form Q has characteristic σ if and only if Q has the canonical splitting $G+H$, where G has characteristic σ and rank 2σ, while H has characteristic 0 and rank $r-2 \sigma$. The form G has a decomposition (2) with $\tau=\sigma$. The decomposition (3) is one such that the first sum is a form G of the type described and the other a form H. Thus it will be proved

[^0]that the decomposition (3) corresponding to a canonical splitting $G+H$ of Q is one with a minimum number of terms.

Like the rank of Q the characteristic of Q has the property that this characteristic changes at most by 1 under addition of a term λL^{2}, L linear, to Q. We shall prove here that actually the minimum τ, the characteristic σ defined above, and the index ${ }^{3}$ (if K is real) possess this property of changing at most by 1 under additions of the type $L M$ to Q, where L and M are arbitrary linear forms.

We recall that the rank r of Q is the minimum τ for which Q can be written as a sum (2), where for each i the forms L_{i} and M_{i} are linearly dependent. Thus both the rank alone, and the rank and characteristic of Q, yield minimum properties of expansions of Q invariant under nonsingular linear transformations on the variables in Q.

It will be understood throughout the present paper that the coefficients are in a field K of the type specified above. The field K is otherwise unrestricted, except where K is taken to be the real or complex fields.
2. Solution of the minimum problem. The following lemma needs no proof.

Lemma 1. The characteristic of a quadratic form Q is invariant under nonsingular linear transformations on Q.

The lemma to follow was proved elsewhere. ${ }^{4}$
Lemma 2. The characteristic of a quadratic form Q changes at most by 1 under addition to Q of a term $\lambda L^{2}, L$ linear and λ in the given field.

Lemma 3. The characteristic of a quadratic form Q is at least as great as the characteristic of each form Q^{*} obtained from Q by imposing homogeneous linear relations on the variables in Q.

We write Q as in (1), and suppose that Q^{*} is obtained from Q by equating x_{1}, \cdots, x_{e-1} to zero for some e. The matrix $A=\left(a_{i j}\right)$ of Q can be written as

$$
\left\|\begin{array}{ll}
* & * \\
* & B
\end{array}\right\|
$$

where B is the matrix $\left(a_{i j}\right)[i, j=e, \cdots, n]$ of Q^{*}, and the asterisks in A indicate minors of A. We let α designate the characteristic of

[^1]the form Q^{*}. Since Q^{*} has a canonical splitting, as described in $\S 1$, the form Q^{*} is equivalent under a nonsingular transformation to the form
\[

$$
\begin{equation*}
\sum_{i=1}^{\alpha} u_{i} v_{i}+F \tag{4}
\end{equation*}
$$

\]

where F is a form of characteristic 0 whose variables are linearly independent of the u 's and v 's. With the form (4) we may associate the symmetric matrix

$$
\left\|\begin{array}{ll}
0 & 0 \\
0 & C
\end{array}\right\|
$$

of order $n-e+1$, where C is a nonsingular minor of the type

$$
\left\|\begin{array}{lll}
0 & 0 & I \\
0 & D & 0 \\
I & 0 & 0
\end{array}\right\|
$$

the minor I being an identity matrix of order α [arising from the summation in (4)]. It follows from elementary matrix considerations that there is a nonsingular matrix N such that

$$
N^{\prime} A N=\left\|\begin{array}{ll}
E & 0 \\
0 & 0
\end{array}\right\|,
$$

where E is a nonsingular minor with the shape

$$
E=\left\|\begin{array}{llll}
* & * & * & I \\
* & * & * & 0 \\
* & * & D & 0 \\
I & 0 & 0 & 0
\end{array}\right\|
$$

and N^{\prime} designates the transpose of N. We let $T=T\left(y_{1}, \cdots, y_{n}\right)$ be a quadratic form in y_{1}, \cdots, y_{n} associated in the usual manner with $N^{\prime} A N$. The rank of $T+\lambda_{1} y_{1}^{2}+\cdots+\lambda_{\alpha} y_{\alpha}^{2}$ is the same as the rank of T for all values of the λ 's. Since T is equivalent to Q the characteristic of Q is at least α.

Suppose now that we impose homogeneous linear relations $Z_{1}=0, \cdots, Z_{s}=0$ on the variables x_{1}, \cdots, x_{n} in Q. It is no restriction to take these Z 's to be linearly independent forms. We may therefore use these Z 's and enough of the x 's to obtain a set of linearly independent forms, which we may employ as the n variables in terms of which Q is expressed. By Lemma 1 this change of vari-
ables leaves the characteristic invariant. Thus the problem which arises when the Z 's are set equal to zero reverts to the above case where $x_{1}=\cdots=x_{\varepsilon-1}=0$.

Theorem 1. The minimum τ for which a quadratic form Q with rank r and characteristic σ has the expansion (2), where the L's and M's are linear forms, is $r-\sigma$.

We suppose that Q is written as (2), where τ is a minimum. If for some i and element k_{i} we have $M_{i} \equiv k_{i} L_{i}$, we write $k_{i} L_{i}^{2}$ in place of $L_{i} M_{i}$ (i not summed). Thus we can split the sum (2) into $R+S$, where

$$
\begin{equation*}
R=\sum_{i=1}^{s} L_{i} M_{i}, \quad S=\sum_{i=1}^{t} \nu_{i} N_{i}^{2} \tag{5}
\end{equation*}
$$

L_{i} being linearly independent of M_{i} for each i, and the N 's being linear forms. The L 's form a set of linearly independent linear forms, since otherwise we can write R as a sum of products of linear forms with less terms. As in $\S 1$ we write a canonical splitting of Q as $G+H$. Since Q has rank r, we may take Q to be a form in r independent variables. Since the rank of S is t, we have $t \geqq r-2 s$. If $s<\sigma$, we have $s+t>r-\sigma$, whence the decomposition corresponding to the canonical splitting $G+H$ has less terms than (2). Thus $s \geqq \sigma$, and we can write $s=\sigma+\rho$ for a $\rho \geqq 0$.

We relabel the subscripts on the L 's, M 's, and N 's if necessary so that the forms in the set Σ, where

$$
\Sigma=\left(L_{1}, \cdots, L_{\sigma+\rho}, M_{1}, \cdots, M_{\zeta}, N_{1}, \cdots, N_{\xi}\right)
$$

yield a minimal basis for the L 's, M 's and N 's. Here $\xi \geqq r-\sigma-\rho-\zeta$. If (2) is a more economical decomposition than that which arises from $G+H$, we have $t \leqq r-\rho-2 \sigma-1$. Now $t \geqq r-\sigma-\rho-\zeta$. These inequalities yield $\zeta \geqq \sigma+1$. We suppose that ζ satisfies this inequality. We let Q^{\prime} designate the form

$$
Q-\sum_{i=\xi+1}^{t} \nu_{i} N_{i}^{2} .
$$

Since by Lemma 2 the characteristic changes at most by 1 under each subtraction with $\nu_{i} N_{i}^{2}$ (i not summed), the index α of Q^{\prime} is such that

$$
\alpha \leqq \sigma+t-\xi
$$

Eliminating t with the aid of an inequality relation above, we have $\alpha \leqq \zeta-1$.

We take the linear forms in the set Σ to be the variables in terms of which the form Q^{\prime} above is expressed. Setting $L_{\zeta+1}, \cdots, L_{\sigma+\rho}=0$, we obtain from Q^{\prime} a form $Q^{\prime \prime}$ with index ζ. By Lemma 3, we have $\alpha \geqq \zeta$, giving us a contradiction. It follows that $\tau=r-\sigma$.

For the complex field the characteristic σ of Q is [$r / 2$], whereas for the real field σ is the minimum of the indices of Q and $-Q$. These results yield Corollary 1.

Corollary 1. For the complex field the minimum number τ of Theorem 1 is $r-[r / 2]$. For the real field τ is the maximum of the indices of Q and $-Q$.

Witt proved ${ }^{5}$ that a form is a zero form if and only if the characteristic σ of this form is greater than 0 .

Corollary 2. The form Q of Theorem 1 is a zero form if and only if $\tau \neq r$.

By Theorem 1 the sum (2), where τ is a minimum, is a sum with the R and S of (5) satisfying $R=G, S=H$, the sum $G+H$ being a canonical splitting of Q.

Although addition of a term $L M, L$ and M linear, may change the rank r of Q by 2 , this is not true of the index σ and $\tau=r-\sigma$ as we shall now prove.

Theorem 2. Under addition of a term $L M, L$ and M linear, to a quadratic form Q, the characteristic σ, and the minimum number τ for decompositions of type (2), change at most by 1.

We write Q as a sum (2) where τ takes on the minimum value $r-\sigma$, the rank of Q being r. We let $\tau^{\prime}, r^{\prime}, \sigma^{\prime}$ designate the analogues for $Q^{\prime}=Q+L M$ of τ, r, σ for Q. Since

$$
Q^{\prime}=\sum_{i=1}^{\tau} L_{i} M_{i}+L M
$$

we clearly have $\tau^{\prime} \leqq \tau+1$. Thus τ changes at most by 1 under the addition of $L M$ to Q.

We suppose that L and M are linearly independent of each other and of the variables in Q so that $r^{\prime}=r+2$. We write Q as $R+S$, where R and S are given by (5) with $s=\sigma, t=r-\sigma$, whence

$$
\begin{equation*}
Q \equiv \sum_{i=1}^{\sigma} L_{i} M_{i}+\sum_{i=1}^{r-\sigma} \nu_{i} N_{i}^{2} . \tag{6}
\end{equation*}
$$

[^2]The form R^{\prime}, where $R^{\prime}=R+L M$, has index $\sigma+1$ and rank $2(\sigma+1)$, from which it follows that Q^{\prime} has the canonical splitting $R^{\prime}+S^{\prime}$ with $S^{\prime} \equiv S$. Thus Q^{\prime} has index $\sigma+1$.

If L and M are taken linearly dependent, or one or both of the forms L, M are restricted to be linear forms in the variables of Q, by Lemma 3 we obtain from the form Q^{\prime} of the preceding paragraph a form Q^{*} whose characteristic does not exceed $\sigma+1$. Thus in any case $\sigma^{\prime} \leqq \sigma+1$, whence also $\sigma \leqq \sigma^{\prime}+1$.

If the rank of $Q+L M$ is less than the rank of Q, Theorem 2 implies that the characteristic of $Q+L M$ does not exceed that of Q, whereas if the addition of $L M$ to Q decreases the rank of Q by 2 , this addition also decreases the characteristic of Q.

We have the following analogue of Theorem 2.
Theorem 3. Under addition of a term $L M, L$ and M linear, to a real quadratic form Q, the index of Q changes at most by 1.

We write Q as the sum $P+N$ of a positive definite form N and a negative definite form N, the rank of Q being the sum of the ranks of P and N. We suppose that Q is written in any way as a sum $P^{\prime}+N^{\prime}$, where P^{\prime} and N^{\prime} are positive definite and negative definite forms respectively. The index α of Q is the rank of P. We let β designate the rank of P^{\prime}, whence

$$
P^{\prime}=\sum_{i=1}^{\beta} p_{i} P_{i}^{2}
$$

for linear forms P_{1}, \cdots, P_{β}. We suppose that $\alpha>\beta$. Setting $P_{1}=\cdots=P_{\beta}=0$, we have $P \not \equiv 0$, while $P+N$ is negative definite, a contradiction. Thus $\alpha \leqq \beta$.

The form $L M$ can be written as the difference $R^{2}-S^{2}$, where R and S are linear forms, or one of the terms R, S is zero. The form $Q+L M$ is a sum of the positive definite form $P+R^{2}$, and negative definite part $N-S^{2}$. Since the rank of $P+R^{2}$ differs at most by 1 from the rank of P, the index of $Q+L M$ does not exceed $\alpha+1$. It follows that the indices of Q and $Q+L M$ differ at most by 1.

Illinois Institute of Technology

[^0]: Presented to the Society, April 18, 1942; received by the editors April 29, 1942.
 ${ }^{1}$ E. Witt, Theorie der Quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. vol. 176 (1937) p. 35.
 ${ }^{2}$ Rufus Oldenburger, The index of a quadratic form for an arbitrary field, Bull. Amer. Math. Soc. abstract 48-5-162.

[^1]: ${ }^{3}$ The index of a real quadratic form Q is the number h of + signs in a canonical form $x_{1}^{2}+\cdots+x_{h}^{2}-x_{h+1}^{2}-\cdots-x_{r}^{2}$ to which Q is equivalent.
 ${ }^{4}$ See the above reference to a paper by R. Oldenburger.

[^2]: ${ }^{5}$ See the above reference to a paper by E. Witt

