EXPANSIONS OF QUADRATIC FORMS

RUFUS OLDENBURGER

1. The problem. A quadratic form Q with coefficients in a field K, whose characteristic is different from 2, is usually given as a linear combination

(1)
$$\sum_{i=1}^{n} a_{ij} x_i x_j$$

of products $\{x_i x_j\}$, where (a_{ij}) is symmetric. The sum (1) is one of the type

(2)
$$\sum_{i=1}^{\tau} L_i M_i,$$

where the L's and M's are linear forms. In general the decomposition (1) is not the most economical way of writing Q as a sum of the type (2) in the sense that τ is a minimum for Q. In treating algebras associated with quadratic forms E. Witt¹ showed that the form Q is equivalent under a nonsingular linear transformation to a decomposition

(3)
$$\sum_{i=1}^{\sigma} y_i z_i + \sum_{i=1}^{r-2\sigma} v_i u_i^2,$$

where the last sum is a nonzero form, and r is the rank of Q. In the present paper we shall show that the minimum τ for Q is $r-\sigma$. Thus this minimum τ is determined by the rank r and the "characteristic" σ of Q. This characteristic² is the maximum number σ of linearly independent linear forms L_1, \dots, L_{σ} such that the rank of $Q+\lambda_1L_1^2+\dots+\lambda_{\sigma}L_{\sigma}^2$ is the same as the rank of Q for all values of the λ 's. The form Q has characteristic σ if and only if Q has the canonical splitting G+H, where G has characteristic σ and rank 2σ , while H has characteristic 0 and rank $r-2\sigma$. The form G has a decomposition (2) with $\tau=\sigma$. The decomposition (3) is one such that the first sum is a form G of the type described and the other a form H. Thus it will be proved

Presented to the Society, April 18, 1942; received by the editors April 29, 1942.

¹ E. Witt, Theorie der Quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. vol. 176 (1937) p. 35.

² Rufus Oldenburger, *The index of a quadratic form for an arbitrary field*, Bull. Amer. Math. Soc. abstract 48-5-162.

that the decomposition (3) corresponding to a canonical splitting G+H of Q is one with a minimum number of terms.

Like the rank of Q the characteristic of Q has the property that this characteristic changes at most by 1 under addition of a term λL^2 , L linear, to Q. We shall prove here that actually the minimum τ , the characteristic σ defined above, and the index³ (if K is real) possess this property of changing at most by 1 under additions of the type LM to Q, where L and M are arbitrary linear forms.

We recall that the rank r of Q is the minimum τ for which Q can be written as a sum (2), where for each i the forms L_i and M_i are linearly dependent. Thus both the rank alone, and the rank and characteristic of Q, yield minimum properties of expansions of Q invariant under nonsingular linear transformations on the variables in Q.

It will be understood throughout the present paper that the coefficients are in a field K of the type specified above. The field K is otherwise unrestricted, except where K is taken to be the real or complex fields.

2. Solution of the minimum problem. The following lemma needs no proof.

LEMMA 1. The characteristic of a quadratic form Q is invariant under nonsingular linear transformations on Q.

The lemma to follow was proved elsewhere.⁴

LEMMA 2. The characteristic of a quadratic form Q changes at most by 1 under addition to Q of a term λL^2 , L linear and λ in the given field.

LEMMA 3. The characteristic of a quadratic form Q is at least as great as the characteristic of each form Q^* obtained from Q by imposing homogeneous linear relations on the variables in Q.

We write Q as in (1), and suppose that Q^* is obtained from Q by equating x_1, \dots, x_{e-1} to zero for some e. The matrix $A = (a_{ij})$ of Q can be written as

$$\| * * \|$$

where B is the matrix $(a_{ij})[i, j = e, \dots, n]$ of Q^* , and the asterisks in A indicate minors of A. We let α designate the characteristic of

³ The *index* of a real quadratic form Q is the number h of + signs in a canonical form $x_1^2 + \cdots + x_k^2 - x_{k+1}^2 - \cdots - x_r^2$ to which Q is equivalent.

⁴ See the above reference to a paper by R. Oldenburger.

[February

the form Q^* . Since Q^* has a canonical splitting, as described in §1, the form Q^* is equivalent under a nonsingular transformation to the form

(4)
$$\sum_{i=1}^{\alpha} u_i v_i + F,$$

where F is a form of characteristic 0 whose variables are linearly independent of the u's and v's. With the form (4) we may associate the symmetric matrix

$$\left| \begin{array}{cc} 0 & 0 \\ 0 & C \end{array} \right|$$

of order n-e+1, where C is a nonsingular minor of the type

$$\left| \begin{array}{ccc} 0 & 0 & I \\ 0 & D & 0 \\ I & 0 & 0 \end{array} \right|,$$

the minor I being an identity matrix of order α [arising from the summation in (4)]. It follows from elementary matrix considerations that there is a nonsingular matrix N such that

$$N'AN = \left\| \begin{array}{cc} E & 0 \\ 0 & 0 \end{array} \right\|,$$

where E is a nonsingular minor with the shape

$$E = \left| \begin{array}{cccc} * & * & * & I \\ * & * & * & 0 \\ * & * & D & 0 \\ I & 0 & 0 & 0 \end{array} \right|,$$

and N' designates the transpose of N. We let $T = T(y_1, \dots, y_n)$ be a quadratic form in y_1, \dots, y_n associated in the usual manner with N'AN. The rank of $T + \lambda_1 y_1^2 + \dots + \lambda_\alpha y_\alpha^2$ is the same as the rank of T for all values of the λ 's. Since T is equivalent to Q the characteristic of Q is at least α .

Suppose now that we impose homogeneous linear relations $Z_1=0, \dots, Z_s=0$ on the variables x_1, \dots, x_n in Q. It is no restriction to take these Z's to be linearly independent forms. We may therefore use these Z's and enough of the x's to obtain a set of linearly independent forms, which we may employ as the n variables in terms of which Q is expressed. By Lemma 1 this change of vari-

138

ables leaves the characteristic invariant. Thus the problem which arises when the Z's are set equal to zero reverts to the above case where $x_1 = \cdots = x_{e-1} = 0$.

THEOREM 1. The minimum τ for which a quadratic form Q with rank r and characteristic σ has the expansion (2), where the L's and M's are linear forms, is $r - \sigma$.

We suppose that Q is written as (2), where τ is a minimum. If for some *i* and element k_i we have $M_i \equiv k_i L_i$, we write $k_i L_i^2$ in place of $L_i M_i$ (*i* not summed). Thus we can split the sum (2) into R+S, where

(5)
$$R = \sum_{i=1}^{s} L_i M_i, \qquad S = \sum_{i=1}^{t} \nu_i N_i^2,$$

 L_i being linearly independent of M_i for each *i*, and the *N*'s being linear forms. The *L*'s form a set of linearly independent linear forms, since otherwise we can write *R* as a sum of products of linear forms with less terms. As in §1 we write a canonical splitting of *Q* as G+H. Since *Q* has rank *r*, we may take *Q* to be a form in *r* independent variables. Since the rank of *S* is *t*, we have $t \ge r-2s$. If $s < \sigma$, we have $s+t>r-\sigma$, whence the decomposition corresponding to the canonical splitting G+H has less terms than (2). Thus $s \ge \sigma$, and we can write $s = \sigma + \rho$ for a $\rho \ge 0$.

We relabel the subscripts on the L's, M's, and N's if necessary so that the forms in the set Σ , where

$$\Sigma = (L_1, \cdots, L_{\sigma+\rho}, M_1, \cdots, M_{\xi}, N_1, \cdots, N_{\xi}),$$

yield a minimal basis for the *L*'s, *M*'s and *N*'s. Here $\xi \ge r - \sigma - \rho - \zeta$. If (2) is a more economical decomposition than that which arises from G+H, we have $t \le r - \rho - 2\sigma - 1$. Now $t \ge r - \sigma - \rho - \zeta$. These inequalities yield $\zeta \ge \sigma + 1$. We suppose that ζ satisfies this inequality. We let Q' designate the form

$$Q - \sum_{i=\xi+1}^t \nu_i N_i^2.$$

Since by Lemma 2 the characteristic changes at most by 1 under each subtraction with $\nu_i N_i^2$ (*i* not summed), the index α of Q' is such that

$$\alpha \leq \sigma + t - \xi.$$

Eliminating t with the aid of an inequality relation above, we have $\alpha \leq \zeta - 1$.

We take the linear forms in the set Σ to be the variables in terms of which the form Q' above is expressed. Setting $L_{\zeta+1}, \dots, L_{\sigma+\rho}=0$, we obtain from Q' a form Q'' with index ζ . By Lemma 3, we have $\alpha \geq \zeta$, giving us a contradiction. It follows that $\tau = r - \sigma$.

For the complex field the characteristic σ of Q is [r/2], whereas for the real field σ is the minimum of the indices of Q and -Q. These results yield Corollary 1.

COROLLARY 1. For the complex field the minimum number τ of Theorem 1 is r - [r/2]. For the real field τ is the maximum of the indices of Q and -Q.

Witt proved⁵ that a form is a zero form if and only if the characteristic σ of this form is greater than 0.

COROLLARY 2. The form Q of Theorem 1 is a zero form if and only if $\tau \neq r$.

By Theorem 1 the sum (2), where τ is a minimum, is a sum with the R and S of (5) satisfying R=G, S=H, the sum G+H being a canonical splitting of Q.

Although addition of a term LM, L and M linear, may change the rank r of Q by 2, this is not true of the index σ and $\tau = r - \sigma$ as we shall now prove.

THEOREM 2. Under addition of a term LM, L and M linear, to a quadratic form Q, the characteristic σ , and the minimum number τ for decompositions of type (2), change at most by 1.

We write Q as a sum (2) where τ takes on the minimum value $r-\sigma$, the rank of Q being r. We let τ' , r', σ' designate the analogues for Q'=Q+LM of τ , r, σ for Q. Since

$$Q' = \sum_{i=1}^{\tau} L_i M_i + L M,$$

we clearly have $\tau' \leq \tau + 1$. Thus τ changes at most by 1 under the addition of LM to Q.

We suppose that L and M are linearly independent of each other and of the variables in Q so that r'=r+2. We write Q as R+S, where R and S are given by (5) with $s=\sigma$, $t=r-\sigma$, whence

(6)
$$Q \equiv \sum_{i=1}^{\sigma} L_i M_i + \sum_{i=1}^{r-\sigma} \nu_i N_i^2.$$

⁵ See the above reference to a paper by E. Witt

140

The form R', where R' = R + LM, has index $\sigma + 1$ and rank $2(\sigma + 1)$, from which it follows that Q' has the canonical splitting R' + S' with $S' \equiv S$. Thus Q' has index $\sigma + 1$.

If L and M are taken linearly dependent, or one or both of the forms L, M are restricted to be linear forms in the variables of Q, by Lemma 3 we obtain from the form Q' of the preceding paragraph a form Q^* whose characteristic does not exceed $\sigma+1$. Thus in any case $\sigma' \leq \sigma+1$, whence also $\sigma \leq \sigma'+1$.

If the rank of Q+LM is less than the rank of Q, Theorem 2 implies that the characteristic of Q+LM does not exceed that of Q, whereas if the addition of LM to Q decreases the rank of Q by 2, this addition also decreases the characteristic of Q.

We have the following analogue of Theorem 2.

THEOREM 3. Under addition of a term LM, L and M linear, to a real quadratic form Q, the index of Q changes at most by 1.

We write Q as the sum P+N of a positive definite form N and a negative definite form N, the rank of Q being the sum of the ranks of P and N. We suppose that Q is written in any way as a sum P'+N', where P' and N' are positive definite and negative definite forms respectively. The index α of Q is the rank of P. We let β designate the rank of P', whence

$$P' = \sum_{i=1}^{\beta} p_i P_i^2$$

for linear forms P_1, \dots, P_{β} . We suppose that $\alpha > \beta$. Setting $P_1 = \dots = P_{\beta} = 0$, we have $P \neq 0$, while P + N is negative definite, a contradiction. Thus $\alpha \leq \beta$.

The form LM can be written as the difference $R^2 - S^2$, where R and S are linear forms, or one of the terms R, S is zero. The form Q+LM is a sum of the positive definite form $P+R^2$, and negative definite part $N-S^2$. Since the rank of $P+R^2$ differs at most by 1 from the rank of P, the index of Q+LM does not exceed $\alpha+1$. It follows that the indices of Q and Q+LM differ at most by 1.

Illinois Institute of Technology

1943]