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Introduction. We propose to investigate here the consequences of 
the identity of each pair chosen from three important generalizations 
of the relation of betweenness on a line, namely, algebraic between-
ness [l, p. 27 J,1 metric betweenness [3, p. 36], and lattice between
ness [7, Part I I ] . We shall also find an interpretation of metric 
betweenness in the Banach space of all continuous functions defined 
on the interval 0^ /^ j 1 which can be used to establish the fact that 
this relation satisfies no strong four or five point transitivity [7, 
Part I ] except h and h. 

We note first that algebraic betweenness implies metric between
ness and lattice betweenness. We find that algebraic betweenness and 
metric betweenness coincide in a seminormed real vector space2 if and 
only if it is strictly convex in the sense of Clarkson [4, p. 404]. We 
then show that the coincidence of metric and lattice betweenness in 
a semimetric space [3, p. 38] which is also a lattice [2, p. 16] leads 
to a system which is a metric lattice (in the sense of G. Birkhoff 
[2, p. 41]). I t follows that a complete seminormed real vector lattice 
is equivalent to an (L)-space [ó] if and only if its metric and lattice 
betweenness relations are identical. Finally, we prove that algebraic 
and lattice betweenness coincide in a real vector lattice if and only 
if it is equivalent to the system of all real numbers. We conclude by 
giving the interpretation of metric betweenness in the space3 C[0, l ] . 

Presented to the Society, September 10, 1942; received by the editors March 27, 
1942. 

1 References to the bibliography at the end of the paper will be in brackets. 
2 We shall use these terms as follows. A seminormed real vector space is a vector 

space over the field of all real numbers together with a real non-negative single-valued 
function ||aj|, called the "norm of a," satisfying (i) ||Xa|| = | x | ||a||, and (ii) | U | = 0 if 
and only if a— 0. A normed real vector space satisfies in addition (iii) | |a| |+||&|| ^ | p + & | | . 
A real vector lattice is a vector space over the field of all real numbers which is also a 
lattice [2, p . 16] with respect to a partial ordering relation " ^ " such that (i) a>b 
and X^O implies \a^\b, and (ii) a^b implies a+c^b+cfor every c. A (semi)normed 
real vector lattice is a real vector lattice which is also a (semi)normed real vector space; 
it is complete if evey fundamental sequence has a limit. A complete normed real vector 
space is usually called a (real) Banach space. 

3 The notation CfO, l ] (sometimes simply C) is currently used to designate the 
space described in the concluding sentence of the preceding paragraph. 
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1. The three betweenness relations. We shall be interested in the 
following relations: 

(a b C)A = b = \a + (1 — X)c, X a real number, 0 ^ X ^ 1, 

(a b C)M = à(a, b) + ô(ô, c) = ô(a, c), 

(ak)L = (ûnè)U(jnc) = i = (ûUj )n(w <o, 
to which we shall refer as RA (algebraic betweenness), RM (metric be
tweenness), and RL (lattice betweenness). The relation RA applies to 
a real vector space, RM to a semimetric space, and RL to a lattice. 
Our purpose is to find those systems to which each two of these three 
relations apply and have the same meaning. 

The following three lemmas are known or evident. 

LEMMA 1. If S is a seminormed real vector space, then we have (ab C)M 

ifandonlyif\\a — b\\ +\\b — c\\ =\\a — c\\. 

LEMMA 2. If S is a distributive lattice, then (a b c)L if and only if 
aC\c^b^a\Jc. 

PROOF. This is Lemma 9.1 of [7]. 

LEMMA 3. If S is a seminormed real vector space, then (a b C)A 

—>(a b c)idfor every a, b, cÇ:S. 

LEMMA 4. If S is a real vector lattice, then {a b c)A—*(a b c)Lfor every 
a, b, c £ S . 

PROOF. I t is well known that a vector lattice is distributive [2, p. 
108], and hence by Lemma 2 it will suffice to show that aC\c^bSa^Jc 
is a consequence of (a b c)A. We have the equations 

( a U c ) - i = ( a - i ) U ( c - l ) = ( l - X)(a - c) U - X(a - c) 

= ((a - c ) U 0 ) - X(a - c). 

Note that ( a - c ) U 0 ^ X ( ( a - c ) U 0 ) , s i n c e X ^ l ; and t h a t X ( ( a - c ) U 0 ) 
= X ( a - c ) U 0 ^ X ( a - c ) , since X^O. Hence ( a U c ) - ô ^ O , that is, 
a^Jc ^ b. The other inequality is dual. 

2. Coincident metric and algebraic betweenness. Clarkson [4, p. 
404] calls a normed real vector space strictly convex if the equality 
Ikll +IHI. H l a + ^ l l f ° r nonzero a and b implies that a—\xb for some 
/x>0. The following theorem then tells us when metric and algebraic 
betweenness coincide. 

THEOREM 1. A seminormed real vector space S is strictly convex if and 
only if algebraic and metric betweenness coincide in 5. 
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PROOF. Let 5 be a strictly convex seminormed real vector space. 
By Lemma 3, we need only show that {a b C)M—»(# b c)A for every 
a, b, c(E:S. We may clearly suppose that a — b and b — c are nonzero. 
But then the strict convexity of S implies that a — b = fx(b — c) for some 
/x>0. The choice \ = 1 /1+JU is effective for (a b C)A> Conversely, if 
(a b C)M—*{O> b c)A for every a, ft, c(ES, the equality ||a|| +||&|| = | | a+ô | | 
for nonzero a and b implies {a 0 — 6)A, and consequently that 
0=X<z— (1— \)b for real X between 0 and 1. The choice jit = ( l—X)/ \ 
is then effective in the definition of the strict convexity of S. The 
proof is complete. 

REMARK 1. Clarkson [4, p. 413] also shows that every separable 
Banach space may be renormed to secure strict convexity. 

3. Coincident metric and lattice betweenness. Our definition of 
lattice betweenness arose as a generalization of the metric between
ness of a metric lattice [2, p. 41 ; 5, 9 ] . We shall show in this section 
that, conversely, a semimetric space which is also a lattice has identi
cal lattice and metric betweenness relations only if it is a metric 
lattice.4 We apply this result to give a characterization of (L)-spaces 
in terms of betweenness relations.5 

Let us consider a semimetric space M with distance function 
S (a, b) which is also a lattice and in which lattice betweenness and 
metric betweenness coincide. 

LEMMA 5. If a, bf c £ M and a^b^c, then {a b C)M. If a, b^M then 
{a a\Jb V)M and {a aC\b &)M. 

PROOF. This is clear from Lemma 8.1 of [7]. 

LEMMA 6. If a, &GM, then 5(a, &)=S(aVJ6, aH&), and S(aH&, b) 
= ô(a, aKJb). 

PROOF. Consider two elements a, bGM. By Lemma S we have the 
relations (a a\Jb &)M, {a aC\b Ô)M, (aC\b b dUb)M, and (aC\b a a\Jb)M-
Hence we have the following equations : 

4 It should be noted that the results of §2 remain valid if we merely require the 
values of 5{a, b) to be in a real vector lattice, provided the terms modular functional, 
metric lattice, and so on, are given proper interpretations. 

6 G. BirkhofTs remark that m [a]^\\a+\\ —\\a-\\ is a sharply positive modular func
tional in an (L)-space (for proof, see [8]) aided the author materially in securing the 
present form of Theorem 2. The functional m [a] is also linear. Its homogeneity follows 
readily from that of ||a||, while its aâditivity is a simple consequence of the identity 
w[a]—w[ô]«||a—fc|| for a^b. When the condition (IX) of Kakutani [6] holds, or, 
equivalently, when m[a\Jb]— m[aC\b] =||a—&||, we find that m [a] is the value of the 
Lebesgue-Stieltjes integral of the function corresponding to a. 
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d(a9 a\Jb) + d(aKJ b, b) = 8(a, b) = 5(a, a Pi b) + ô(a P ô, 6), 

Ô(a r\b,b)+ ô(6, a U b) = ô(a Pi 6, a U 6) = Ô(a H M ) + ô(a, a U 6). 

Subtracting these equations we see that 

ô(a, a\Jb) - b(aC\ b, b) = Ô(a, b) - ô(a U b, a P 6) 

= ô(ar\b, b) - ô(a, a U 6). 

I t follows that the relations stated in the lemma hold. 
REMARK 2. Note that the first result of Lemma 5 together with the 

results of Lemma 6 imply that the second result of Lemma 5 is valid. 
This is clear since 5(a, b)=ô(a\Jb, aC\b) =5(aU6, a )+5(a , aC\b) 
~ô(a, aC\b)+ô(ar\b, b), and dually. 

LEMMA 7. The lattice M is modular. 

PROOF. We base our proof on the fact that if M fails to be modular 
then it contains as a sublattice the simplest non-modular lattice [2, 
p. 34]. Let the elements of this sublattice be 0, a, i , c, I , with ƒ the 
greatest, 0 the least element, and b>c. Since 0—aC\c and 0<a<It 

Lemma 5 gives 5(0, c) =*ô(a, I). Since 0<c<b<I, Lemma 5 and this 
result gives ô(a, 7)+ô(c, b)+ô(b, 7) =5(0 , / ) . Again, since 7 ~ # U 6 , 
we have 5(0, I)+ô(c, b) = 5(0, I ) , and consequently ô(è, c) = 0, con
trary to b >c. Hence M cannot fail to be modular. 

LEMMA 8. If a, b, cGM and a^b, then 

è(a \J c,b\J c) + Ô(ar^c,br\c) = ô(a, b). 

PROOF. Consider elements a, 6, c£ i l f with a = ô. By Lemma 6 we 
have 

5 ( a U c , ô U c ) = 5 ( a U i U ^ ô U c ) = 5(a, a P (6 U c)). 

Noting that a = a P ( & U c ) ^b, we find from Lemma 5 that 

d(a\J c,b\J c) = 5(a, 6) - 0(6, aC\{b\J c)). 

Using Lemmas 7 and 6 we have 

5(a U c J U c ) = ô(a, b) - «(6, W ( Û H c)) 

= «(a, 6) - ô(a p c, Ô p a p <o. 
Since #^&, this proves the lemma. 

LEMMA 9. If a* ÇzM the functional m[a] = b{a\J a*} a*) — 5(a*, ftHa*) 
is a sharply positive modular functional and S (a, b) =m [aVJb ] — m [aC\b ] 
for every a, b(E.M. 
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PROOF. From Lemma 6 and the fact that S(a, &) > 0 for a^b, it 
will suffice to show that 

(1) ô(a, b) = m[a] — m[b] 

for every a,bÇ^M such that a^b. Hence consider elements a, bÇ:M 
for which a^b. Lemma 8 yields the equation 

(2) ô(a U a * , J U a*) + B(a P a*, b P a*) = 5(a, 6). 

Since aVJa*^&VJa*^a*, and dually, Lemma 5 yields the following 
equations 

d(a U a*, a*) - Ô(î U a*, a*) = ô(a U Û * , J U a*), 

Ô(a*, 6 H a*) - ô(a*, a P a*) = à (a P a*, 6 Pi a*). 

Adding these equations and using the equation (2) we obtain (1) from 
the definition of the functional m [a]. The proof is complete. 

REMARK 3. The validity of Lemmas 7-9 depends only on Lemma 6 
and the first result of Lemma 5. 

LEMMA 10. The distance f unction 6(a, 6) is a metric for M. 

PROOF. This follows from Lemma 9 and Theorem 3.10 of [2]. 

THEOREM 2. If S is a semimetric space with distance f unction p(a, b) 
which is also a lattice, then metric betweenness and lattice betweenness 
coincide in S if and only if: 

(i) For every a, b, c G S the inequalities a^b^c imply that (a b C)M. 
(ii) For every a, ô £ S , p(a, &) =p(aU&, aC\b) and p(a, a\Jb) 

= p(6, aC\b). 
The conditions (i) and (ii) hold if and only if for each a*ÇzM the 
functional m[a]^p(aVJ'a*;, a*)—p(a*, a P a * ) is a sharply positive 
modular functional and S is a. metric lattice with metric p(a, b) 
= m \a\Jb ] — m \aC\b J. 

PROOF. This is clear from Lemmas 5-9, Remarks 2 and 3, and 
Theorem 10.1 of [7]. 

We also have a specialization of Theorem 2. 

THEOREM 3. A complete seminormed real vector lattice S is equivalent 
to an (L)-space if and only if lattice and metric betweenness coincide in S. 

PROOF. Let 5 be a complete seminormed real vector lattice in which 
lattice and metric betweenness coincide. By Theorem 2, Lemma 6, 
and Lemma 10, S is a complete normed real vector lattice satisfying 
the conditions, 

file:///a/Jb
file:///aC/b
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(VIII) if a, Z x E S a n d a ^ O , 6 ^ 0 , then ||a|| +| |ô | | = | | a + è | | ; 
(IX) if a, &G5and a H 6 = 0, then | | a+i | | : =»| |a -è | | ; 

of Kakutani [ó]. Kakutani's fundamental Theorem 7 [ó] together 
with the fact that his condition (V) is not needed (in his Theorem 7) 
[8] now shows that S is equivalent to an (L)-space. 

Conversely, if 5 is equivalent to an (L)-space, it is easy to verify 
the conditions (i) and (ii) of Theorem 2. Hence lattice betweenness 
and metric betweenness coincide in S. The proof is complete. 

REMARK 4. We may restate Theorem 3 as follows. A complete semi-
normed real vector lattice is equivalent to an (L)-space if and only if it 
is a metric lattice. 

4. Coincident lattice and algebraic betweenness. We include the 
following theorem for the sake of completeness. 

THEOREM 4. If S is a real vector lattice, then lattice betweenness and 
algebraic betweenness coincide in S if and only if the dimension of S 
(as a vector space) is one. 

PROOF. We need only show that (a b c)L~^(a b C)A for every 
a> b, CÇLS implies that S is one-dimensional. I t is easy to verify 
that RA has the fundamental transitivity tz [7]. By Theorem 9.7 of 
[7] every pair of elements of S are comparable by "jg:." If, then, 
there were two linearly independent elements a, 6 £ 5 , we should have 
(by symmetry) a>b>0 or a>0>b; and hence [7, Lemma 8.1] 
(a b 0 ) L or (a 0 6)L. By hypothesis, we would have 6=Xa or 0=Xa 
+ (1— X)b, which clearly contradicts the linear independence of a 
and b. Thus 5 is one-dimensional. 

5. Metric betweenness in the space C[0, l ] . The question of 
whether or not the metric betweenness of a normed real vector lattice 
possesses any more than the required transitivities (that is, (ce), (j3), th 

and h of [7]) can be settled by the space C[0, l ] . We give in this 
section an interpretation of RM in C[0, 1 ] and leave to the reader the 
construction of simple examples which show that this relation has 
only the required transitivities. This result should be contrasted with 
the result of Clarkson mentioned in Remark 1. 

LEMMA 11. In the space C[0, l ] the relation (a 0 b)M holds if and 
only if there is a point t0 on [0, 1 ] at which each of the functions \ a(t) \, 
| 6(0 I > flwd | #(0—6(0 | attains its maximum value and the relation 
(a(to) 0 b(t0))M holds. 

PROOF. Suppose that the relation (a 0 6)M holds in C[0, 1 ]. We may 
clearly assume that a and b are nonzero. Let t0 be a point on [0, 1 ] at 
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which the function |a(t)—b(t) | attains its maximum value. Then we 
have 

Ml +11*11 = l l " - * l l =\o(to)-Kto)\ 

â I *(*o) I + I Wo) I ^ | | a | | + | | J||. 

I t follows that | a(t0) | + | b(t0) \ = \\a\\ +\\b\\ and that each of the func
tions \a(t)\ and \b(t)\ attains its maximum at to. Consequently 
neither a{to) nor b(t0) can be zero. If they should both have the same 
sign we would find that | a(to) — b(to) | < | a(h) | + | b(fa) | . This is im
possible, and we conclude that the relation (a(to) 0 b(t0))M holds. 

Conversely, if there is a point to on [0, 1 ] a t which each of the 
functions | a ( J ) | , |&(/)|>and \a(t) — b(t)\ attains its maximum value 
and the relation (a(/0) 0 Ô(/O))M holds, we see that 

II* - &|| = I <*(*o) ~ b(t0) | = | a(t0) | + | b(t0)\ = ||a|| + ||ft||. 

The proof is complete. 

THEOREM 5. In the space C[0, l ] the relation {a b C)M holds if and 
only if there is a point to on [0, 1 ] at which each of the functions 
|a(t) — b(t) | , | b(t) —c{t) | , and \a{t)—c{t) | attains its maximum value 
and the relation (a(/0) b(t0) C(/0))M holds. 

PROOF. This is an immediate consequence of Lemma 11 and the 
fact that (a b C)M if and only if (a+x b+x C+X)M for every 
a , i , c , * G C [ 0 , 1]. 
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