SOME PROPERTIES OF MEASURABLE FUNCTIONS

H. FEDERER AND A. P. MORSE

1. Introduction. Throughout this paper the letter I will denote some fixed closed interval and f a numerically valued measurable function on I. It is our purpose to establish certain general properties of f. We point out in $\S 4$ that two theorems of Banach are almost immediate consequences of these properties. We suspect that further use can be made of our results.
2. Some notations. We define

$$
\begin{aligned}
X^{\wedge} & ={\underset{y}{y}}^{y}[y=f(x) \text { for some } x \in X], & X \subset I, \\
Y^{\vee} & ={ }_{x}^{E}[f(x) \in Y], & Y \subset I^{\wedge} .
\end{aligned}
$$

Writing $X^{\wedge \vee}=\left(X^{\wedge}\right)^{\vee}$ and $Y^{\vee \wedge}=\left(Y^{\vee}\right)^{\wedge}$ we note that the relations

$$
\begin{array}{rlrl}
X & \subset X^{\wedge \vee}, & Y & =Y^{\vee \wedge}, \\
\left(\sum_{n=1}^{\infty} X_{n}\right)^{\wedge}=\sum_{n=1}^{\infty} X_{n}^{\wedge}, & \left(\sum_{n=1}^{\infty} Y_{n}\right)^{\vee} & =\sum_{n=1}^{\infty} Y_{n}^{\vee}, \\
\left(\prod_{n=1}^{\infty} X_{n}\right)^{\wedge} \subset \prod_{n=1}^{\infty} X_{n}^{\wedge}, & \left(\prod_{n=1}^{\infty} Y_{n}\right)^{\vee} & =\prod_{n=1}^{\infty} Y_{n}^{\vee}, \\
X_{1}^{\wedge}-X_{2}^{\wedge} \subset\left(X_{1}-X_{2}\right)^{\wedge}, & Y_{1}^{\vee}-Y_{2}^{\vee} & =\left(Y_{1}-Y_{2}\right)^{\vee}, \\
Y X^{\wedge}=\left(Y^{\vee} X\right)^{\wedge},
\end{array}
$$

hold whenever X, X_{1}, X_{2}, \cdots are subsets of I and Y, Y_{1}, Y_{2}, \cdots are subset of I^{\wedge}.

We further define

$$
\begin{aligned}
\{y\} & =\underset{z}{E}[z=y] \\
\mathfrak{F} & =\underset{y}{E}\left[\{y\}^{\vee} \text { is finite }\right] \\
\Omega & =\underset{\nu}{E}\left[\{y\}^{\vee} \text { has at least } \aleph_{0} \text { elements }\right] \\
\mathfrak{Q} & =\underset{y}{E}\left[\{y\}^{\vee} \text { has more than } \aleph_{0} \text { elements }\right] .
\end{aligned}
$$

Received by the editors June 4, 1942.

We denote the (outer) linear Lebesgue measure of a set A by $|A|$.
3. Some theorems concerning f.

Theorem 3.1. If A is a measurable subsel of I, then there is a measurable subset B of A such that $B^{\wedge}=A^{\wedge}$ and f is univalent on B.

Proof. Let ${ }^{1} 0=C_{0} \subset C_{1} \subset C_{2} \subset \cdots$ be closed subsets of A relative to each of which f is continuous and for which

$$
C=\sum_{n=1}^{\infty} C_{n}, \quad|A-C|=0
$$

For each positive integer n let $^{2} D_{n}$ be a measurable subset of C_{n} such that $D_{n}^{\wedge}=C_{n}^{\wedge}$ and f is univalent on D_{n}. Let

$$
B_{1}=\sum_{n=1}^{\infty}\left[D_{n}-C_{n-1}^{\wedge \vee}\right] .
$$

Noting that C_{n-1}^{\wedge} and $C_{n} C_{n-1}^{\wedge \vee}$ are closed and also that

$$
D_{n}-C_{n-1}^{\wedge \vee}=D_{n}-C_{n} C_{n-1}^{\wedge \vee}, \quad n=1,2,3, \cdots
$$

we see that B_{1} is a measurable subset of C.
Now let $y_{0} \in C^{\wedge}$. Let k be the least integer in

$$
\underset{n}{E}\left[y_{0} \in \hat{C_{n}}\right]
$$

Since

$$
y_{0} \in C_{k}^{\wedge}-C_{k-1}^{\wedge}=\hat{D_{k}}-\hat{C}_{k-1}^{\wedge} C\left(D_{k}-C_{k-1}^{\wedge \vee}\right)^{\wedge}
$$

take a number x_{0} such that $f\left(x_{0}\right)=y_{0}$ and

$$
x_{0} \in\left[D_{k}-C_{k-1}^{\wedge \vee}\right] \subset B_{1}
$$

Thus $y_{0} \in B_{1}^{\wedge}$. Moreover if $x_{0} \neq x \in B_{1}$ with $f(x)=y_{0}$, we could, for some integer $l>k$, successively infer the relations

$$
x \in D_{l}-C_{l-1}^{\wedge \vee}, \quad y_{0} \in \hat{C_{k}} \subset C_{l-1}^{\wedge} . \quad x \in C_{l-1}^{\wedge \vee}
$$

the first and last of which contradict.
Consequently $C^{\wedge} \subset B_{1}^{\wedge}, f$ is univalent on $B_{1}, C^{\wedge}=B_{1}^{\wedge}$.
Let $\alpha=A-C^{\wedge \vee}$ and select a set $B_{2} \subset \alpha$ such that $B_{2}^{\wedge}=\alpha^{\wedge}$ and f is univalent on B_{2}. Now

[^0]$$
B_{2} \subset \alpha \subset A-C, \quad\left|B_{2}\right|=0
$$

Defining $B=B_{1}+B_{2}$ we see that B is measurable and that

$$
\begin{aligned}
A^{\wedge} \supset B^{\wedge} & =B_{1}^{\wedge}+B_{2}^{\wedge} \\
& =C^{\wedge}+\left(A-C^{\wedge \vee}\right)^{\wedge} \supset C^{\wedge}+\left(A^{\wedge}-C^{\wedge}\right)=A^{\wedge}
\end{aligned}
$$

Lastly f is univalent on B; for otherwise, in view of its univalence on B_{1} and B_{2}, we could select points $x_{1} \in B_{1}$ and $x_{2} \in B_{2}$ with $f\left(x_{1}\right)$ $=f\left(x_{2}\right)$ and deduce the false proposition

$$
x_{2} \in B_{2} B_{1}^{\wedge \vee} \subset \alpha C^{\wedge \vee}=\left(A-C^{\wedge \vee}\right) C^{\wedge \vee}=0
$$

The proof is complete.
Lemma 3.2. If f is continuous relative to each of the closed sets $A_{1} \subset A_{2} \subset A_{3} \subset \cdots$ with

$$
A=\sum_{j=1}^{\infty} A_{j} \subset I
$$

then

$$
S_{n}=A \cdot\left(\underset{y}{E}\left[A\{y\}^{\vee} \text { has at least } n \text { elements }\right]\right)^{\vee}
$$

is a Borel set for each positive integer n.
Proof. Let n be a positive integer.
For each positive integer j let W_{j} be that subset of Euclidean n-space such that $P=\left(P_{1}, P_{2}, \cdots, P_{n}\right)$ is in W_{j} if and only if

$$
\begin{array}{ll}
P_{i} \in A_{j}, & i=1,2, \cdots, n \\
P_{i}-P_{i-1} \geqq 1 / \underset{j}{ }, & i=2,3, \cdots, n
\end{array}
$$

For $j=1,2, \cdots 3, \cdots$ note that W_{j} is bounded and closed and let $B_{j}=A_{j} \underset{x}{E}$ [there is a $P \in W_{j}$ with $f(x)=f\left(P_{i}\right)$ for $\left.i=1,2, \cdots, n\right]$. It follows that

$$
\begin{equation*}
S_{n}=\sum_{j=1}^{\infty} B_{j} \tag{1}
\end{equation*}
$$

Now let j_{0} be a positive integer and $x_{1}, x_{2}, x_{3}, \cdots$ be points of $B_{j 0}$ such that

$$
\lim _{m \rightarrow \infty} x_{m}=x_{0} \in I
$$

Clearly $x_{0} \in A_{i_{0}}$. There are points $P^{1}, P^{2}, P^{3}, \cdots$ of $W_{i_{0}}$ such that

$$
f\left(x_{m}\right)=f\left(P_{i}^{m}\right), \quad m=1,2,3, \cdots ; i=1,2,3, \cdots, n .
$$

Let α be a set of integers and P^{0} be a point of the compact set $W_{i_{0}}$ such that

$$
\lim _{m \rightarrow \infty, m \in \alpha} P^{m}=P^{0} .
$$

Since f is continuous relative to $A_{j_{0}}$ we conclude

$$
f\left(P_{i}^{0}\right)=\lim _{m \rightarrow \infty, m \in \alpha} f\left(P_{i}^{m}\right)=\lim _{m \rightarrow \infty, m \in \alpha} f\left(x_{m}\right)=f\left(x_{0}\right)
$$

$$
i=1,2, \cdots, n
$$

which implies $x_{0} \in B_{j_{0}}$. Hence $B_{j_{0}}$ is closed.
In view of (1) the proof is complete.
Theorem 3.3. There is a measurable ${ }^{3}$ set C such that $C^{\wedge}=\Re$ and

$$
\left(\{y\}^{\vee}-C\right) \text { is finite for each } y \in I^{\wedge}
$$

Proof. Retaining the notation of the statement of 3.2 and demanding in addition that $|I-A|=0$, we define

$$
\begin{align*}
& S=A \cdot\left(\underset{y}{E}\left[A\{y\}^{\vee} \text { is infinite }\right]\right)^{\vee} \tag{2}\\
& T=(I-A) \cdot\left(\underset{y}{E}\left[(I-A)\{y\}^{\vee} \text { is infinite }\right]\right)^{\vee} \tag{3}\\
& C=S+T
\end{align*}
$$

The set C is measurable because $S=\prod_{n=1}^{\infty} S_{n}$ and $|T|=0$. The fact that $C^{\wedge} \subset \Omega$ may be easily verified by deleting A and ($I-A$) from (2) and (3), respectively.

The assumption that $\left(A\{y\}^{\vee}-C\right)$ is infinite leads to the relations

$$
A\{y\}^{\vee} \subset S \subset C, \quad A\{y\}^{\vee}-C=0
$$

the second of which is contradictory. Similarly the assumption that $\left((I-A)\{y\}^{\vee}-C\right)$ is infinite leads to a contradiction.
Thus $\{y\}^{\vee}-C$ is finite for each $y \in I^{\wedge}, C\{y\}^{\vee}$ is infinite (and non-

[^1]vacuous) for $y \in \Omega$; consequently $\Re \subset C^{\wedge}$.
Hence $\Omega=C^{\wedge}$.
Theorem 3.4. ${ }^{4}$ Let $\epsilon>0$. Then
(i) there is a measurable set $L \subset I$ with $L^{\wedge}=\Omega$ and $|L|<\epsilon$;
(ii) there is a measurable set $R \subset I$ with $R^{\wedge}=\mathfrak{Q}$ and $|R|=0$.

Proof. Let C be a measurable set such that $C^{\wedge}=\Omega$ and $\{y\}^{\vee}-C$ is finite for each $y \in \Omega$.

Let F be the family of measurable sets $X \subset C$ such that $X\{y\}^{\vee}$ is finite for each $y \in X^{\wedge}$. Note that $0 \in F \neq 0$ and define

$$
M=\sup _{X \in F}|X|
$$

and let $X_{1}, X_{2}, X_{3}, \cdots$ be sets in F such that $\lim _{n \rightarrow \infty}\left|X_{n}\right|=M$. Letting

$$
S_{n}=\sum_{j=1}^{n} X_{j}, \quad n=1,2,3, \cdots
$$

observe that $X_{n} \subset S_{n} \in F$. Thus $\left|X_{n}\right| \leqq\left|S_{n}\right| \leqq M$ for $n=1,2,3, \cdots$ and consequently

$$
|S|=\lim _{n \rightarrow \infty}\left|S_{n}\right|=M \quad \text { where } S=\sum_{n=1}^{\infty} S_{n}
$$

Let n_{0} be an integer such that $\left|S-S_{n_{0}}\right|<\epsilon$. Let T be a measurable (3.1) subset of $C-S$ such that $T^{\wedge}=(C-S)^{\wedge}$ and f is univalent on T.

Defining

$$
L=T+\left(S-S_{n_{0}}\right), \quad R=T \mathfrak{Q}^{\vee}
$$

we verify first that $|T|=0$. If $|T|$ were greater than 0 there would be an integer k such that

$$
\begin{gathered}
\left|S_{k}\right|>M-|T|, \quad\left(T+S_{k}\right) \in F, \quad T S_{k} \subset T S=0 \\
M \geqq\left|T+S_{k}\right|=|T|+\left|S_{k}\right|>M, \quad M>M
\end{gathered}
$$

Consequently L and R are measurable, $|L|<\epsilon,|R|=0$.
Next since $S_{n_{0}}\{y\}^{\vee}$ is at most finite, $S\{y\}^{\vee}$ is at most countable and $C\{y\}^{\vee}$ has the same power as $\{y\}^{\vee}$ for $y \in \Omega$, we see that

$$
\Omega \subset\left(C-S_{n_{0}}\right)^{\wedge} \subset \Omega, \quad \Omega \subset(C-S)^{\wedge}=T^{\wedge}
$$

From these relations it follows almost immediately that $L^{\wedge}=\Omega$ and $R^{\wedge}=\mathfrak{\Omega}$.

[^2]4. Some applications. We say our function f satisfies condition S if and only if for each $\epsilon>0$ there is a $\delta>0$ such that
$$
\left|X^{\wedge} \cdot[-1 / \epsilon, 1 / \epsilon]\right|<\epsilon \quad \text { whenever } X \subset I,|X|<\delta ;
$$
f satisfies condition N if and only if
$$
\left|X^{\wedge}\right|=0 \quad \text { whenever } X \subset I,|X|=0 ;
$$
f satisfies condition T_{1} if and only if $|\Omega|=0$; and f satisfies condition T_{2} if and only if $|\mathfrak{Q}|=0$.

The following two theorems of Banach ${ }^{5}$ are essentially corollaries of 3.4.

Theorem 4.1. If fatisfies condition N, then it satisfies T_{2}.
Theorem 4.2. A necessary and sufficient condition that f satisfy condition S is that it satisfy both N and T_{1}.

Theorem 4.1 and the necessity in 4.2 are immediate consequences of 3.4. The sufficiency in 4.2 may be proved as follows:

Suppose f satisfies N and T_{1} but not S. Then we can find a number $\epsilon>0$ and measurable subsets $A_{1} \supset A_{2} \supset A_{3} \supset \cdots$ of I such that

$$
\lim _{n \rightarrow \infty}\left|A_{n}\right|=0, \quad\left|A_{n}^{\wedge}\right| \geqq \epsilon, \quad A_{n}^{\wedge} \subset[-1 / \epsilon, 1 / \epsilon], ~ 子 ~ n=1,2,3, \cdots .
$$

We note ${ }^{6}$ that $A_{n}^{\wedge}, I^{\wedge}, \Omega, \mathfrak{F}$, are measurable and define

$$
A=\prod_{n=1}^{\infty} A_{n}
$$

Since the product of a descending sequence of nonvacuous finite sets is nonvacuous, we have

$$
\mathfrak{F} \prod_{n=1}^{\infty} A_{n}^{\wedge} \subset\left(\prod_{n=1}^{\infty} A_{n}\right)^{\wedge}=A^{\wedge}
$$

Hence

$$
\left|A^{\wedge}\right| \geqq\left|\mathfrak{F} \prod_{n=1}^{\infty} \hat{A_{n}}\right|=\lim _{n \rightarrow \infty}\left|\mathfrak{F} \hat{A_{n}}\right|=\lim _{n \rightarrow \infty}\left|\hat{A_{n}}\right| \geqq \epsilon
$$

in contradiction to the relations

$$
|A|=\lim _{n \rightarrow \infty}\left|A_{n}\right|=0, \quad\left|A^{\wedge}\right|=0
$$

[^3]Theorem 4.2 is proved.
5. Generalizations. Suppose E is a metric space and ϕ is a measure over ${ }^{7} E$ such that: closed sets are ϕ measurable in the sense of Carathéodory; ${ }^{8}$ every ϕ measurable set is the sum of an F_{σ} and a set of ϕ measure zero; E is a countable sum of compact sets; $\phi(E)<\infty$.

Let H be another metric space. We say a function q is ϕ finitely valued, if it is on E, its range is a finite subset of H and

$$
\underset{x}{E}[q(x)=y]
$$

is ϕ measurable for each $y \in H$. We call a function ϕ measurable, if it is ϕ almost everywhere in E the limit of a sequence of ϕ finitely valued functions.

To generalize our results we replace I by E, Lebesgue measure by ϕ, f by a ϕ measurable function g, the word "closed" in the statement of 3.2 by "compact." Conditions S, N, T_{1}, T_{2} are to be interpreted in terms of such a measure ψ over H that closed subsets of H are ψ measurable and bounded sets have finite ψ measure.

All our theorems remain true under these conditions with properly adjusted notation. Leaving details to the reader, we solve the only non-trivial problem arising in this extension by the following:

Theorem 5.1. If g is continuous relative to the compact set $C \subset E$, then there is a Borel set $B \subset C$ such that $B^{\wedge}=C^{\wedge}$ and g is univalent on B.

Proof. Select ${ }^{9}$ a continuous function h whose domain is a perfect set $A \subset[0,1]$ and whose range is C.

For $n=1,2,3, \cdots$, let A_{n} be the set such that $t \in A_{n}$ if and only if $t \in A$ and the relations

$$
s \in A, \quad s \leqq t-n^{-1}, \quad g[h(s)]=g[h(t)]
$$

are incompatible. Note that A_{n} is open with respect to A. Let

$$
\begin{aligned}
B_{n} & =C \cdot \underset{x}{E}\left[x=h(t) \text { for some } t \in A_{n}\right], \\
B & =\prod_{n=1}^{\infty} B_{n} .
\end{aligned}
$$

Observe that B is an $F_{\sigma \delta}$.

[^4]Now choose $y_{0} \in C^{\wedge}$. Taking

$$
t_{0}=\inf A \cdot \underset{t}{E}\left[g[h(t)]=y_{0}\right], \quad x_{0}=h\left(t_{0}\right)
$$

we easily check that

$$
t_{0} \in \prod_{n=1}^{\infty} A_{n}, \quad x_{0} \in B, \quad g\left(x_{0}\right)=y_{0}
$$

If $x_{0} \neq x_{1} \in B$ with $g\left(x_{1}\right)=y_{0}$, we infer that

$$
T=A \cdot \underset{t}{E}\left[h(t)=x_{1}\right]
$$

is a closed set lying entirely to the right of t_{0} with distance $d>0$ from t_{0}; hence $n>d^{-1}$ implies $T \subset A-A_{n}$ which in turn implies $x_{1} \in E-B_{n} \subset E-B$ contrary to the assumption $x_{1} \in B$.

Theorem 5.1 is proved.
Now we replace the condition that $\phi(E)<\infty$ by the hypothesis:

$$
\begin{aligned}
& E=\sum_{n=1}^{\infty} E_{n}, \quad E_{n} E_{m}=0 \text { for } n \neq m \\
& E_{n} \text { is } \phi \text { measurable with } \phi\left(E_{n}\right)<\infty
\end{aligned}
$$

Obviously Theorem 3.4 part (i) and Theorem 4.2 do not ${ }^{10}$ hold under these new conditions. However 3.1, 3.2, 3.3, 3.4 part (ii), 4.1 are still valid. To prove this it is sufficient to know of the existence of a measure Φ over E such that: $\Phi(E)<\infty$; a set is Φ measurable if and only if it is ϕ measurable; a set has Φ measure zero if and only if it has ϕ measure zero.

Let $\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots$ be positive numbers such that

$$
\sum_{n=1}^{\infty} \lambda_{n} \phi\left(E_{n}\right)<\infty
$$

and define Φ over E by the relation:

$$
\Phi(X)=\sum_{n=1}^{\infty} \lambda_{n} \phi\left(X E_{n}\right) \quad \text { for } X \subset E
$$

The reader will find no difficulty in checking that Φ is a measure with the required properties.

University of California

[^5]
[^0]: ${ }^{1}$ See Saks, Theory of the integral, Warsaw, 1937, p. 72.
 ${ }^{2}$ See Saks, loc. cit. p. 282.

[^1]: ${ }^{3}$ Using the fact that there is a perfect set of measure zero which is decomposable into a continuum of disjoint perfect sets, it can be shown that a judicious choice of our function f insures that neither Ω^{\vee} nor \mathfrak{Q}^{\vee} is measurable.

[^2]: ${ }^{4}$ It is evident from Theorem 3.1 that Theorem 3.4 remains true if we add the requirement that f be univalent on L and on R.

[^3]: ${ }^{5}$ See Saks, loc. cit. p. 284.
 ${ }^{6}$ If f satisfies N, then X^{\wedge} is measurable, whenever X is a measurable subset of I.

[^4]: ${ }^{7}$ We say Λ is over E if and only if Λ is a function whose domain is the set of subsets of E.
 ${ }^{8}$ See H. Hahn, Theorie der reellen Funktionen, vol. 1, Berlin, 1921, p. 424.
 ${ }^{9}$ See W. Sierpinski, Introduction to general topology, Toronto, 1934, p. 166.

[^5]: ${ }^{10}$ Counterexample: $g(x)=\sin x,-\infty<x<+\infty$.

