A CON JECTURE OF ORE ON CHAINS IN PARTIALLY ORDERED SETS

SAUNDERS MacLANE
In a recent investigation, Ore ${ }^{1}$ has given a form of the JordanHölder theorem valid for an arbitrary partially ordered set P. This theorem involves essentially the deformation of one chain into another by successive steps, each step being like that used in the conventional Jordan-Hölder theorem. Ore observes that his first theorem would be slightly easier to apply if it were proved under a weaker hypothesis. The modified theorem runs as follows: ${ }^{2}$

Theorem. If P is a partially ordered set in which every chain joining two elements is finite, then any complete chain between two elements $b<a$ can be deformed into any other complete chain between the same two elements.

The proof rests on this lemma:
Lemma. Under the hypothesis of the theorem, if C is a complete chain from b to a which cannot be deformed into the complete chain D from b to a, there exist in P elements $b^{\prime}<a^{\prime}$ and complete chains C^{\prime} and D^{\prime} from b^{\prime} to a^{\prime} such that C^{\prime} cannot be deformed into D^{\prime} and such that $b \leqq b^{\prime}, a^{\prime} \leqq a$ where either $b<b^{\prime}$ or $a^{\prime}<a$.

Proof. Case 1. C and D have in common the element $e, b<e<a$. Then either C_{b}^{e} cannot be deformed into D_{b}^{e}, or C_{e}^{a} cannot be deformed into D_{e}^{a}. In these two cases, set $b^{\prime}=b, a^{\prime}=e$ or $b^{\prime}=e, a^{\prime}=a$, respectively.

Case 2. C and D have no elements in common. Since C cannot be deformed into D, they cannot together constitute a simple cycle. There will then exist, say, elements c in C and d in D with $b<c<a$, $b<d<a$ and an element m in P with $c \leqq m<a, d \leqq m<a$. Because of the hypothesis that every chain in P joining two elements is finite, there will exist in P finite complete chains $E_{m}^{a}, F_{c}^{m}, G_{d}^{m}$. Then b is joined to a by four complete chains,

$$
\begin{gathered}
C_{b}^{c}+C_{c}^{a}, \quad C_{b}^{c}+F_{c}^{m}+E_{m}^{a}, \\
D_{b}^{d}+G_{d}^{m}+E_{m}^{a}, \quad D_{b}^{d}+D_{d}^{a} .
\end{gathered}
$$

[^0]Since C cannot be deformed into D, one of the following three deformations must be impossible:

$$
\begin{gathered}
C_{c}^{a} \rightarrow F_{c}^{m}+E_{m}^{a}, \quad C_{b}^{c}+F_{c}^{m} \rightarrow D_{b}^{d}+G_{d}^{m}, \\
G_{d}^{m}+E_{m}^{a} \rightarrow D_{d .}^{a}
\end{gathered}
$$

In the first case we set $a^{\prime}=a, b^{\prime}=c$; in the second case, $a^{\prime}=m, b^{\prime}=b$; in the third case $a^{\prime}=a, b^{\prime}=d$. In each case we have the conclusion of the lemma.

To prove the theorem, suppose that P were to contain two complete chains C and D joining b to a in such wise that C cannot be deformed into D. By induction on n, the lemma gives in P elements $a=a_{0} \geqq a_{1} \geqq \cdots \geqq a_{n}$ and $b=b_{0} \leqq b_{1} \leqq b_{n} \leqq a_{n}$ such that for each i either $a_{i-1}>a_{i}$ or $b_{i-1}<b_{i}(i=1, \cdots, n)$, and such that there are complete chains C_{n}, D_{n} joining b_{n} to a_{n} with C_{n} not deformable into D_{n}. This construction can be carried on indefinitely, using the axiom of choice to select at each stage a definite pair a_{n+1}, b_{n+1}. This produces two sequences of elements a_{i}, b_{i} with

$$
b_{0} \leqq b_{1} \leqq b_{2} \leqq \cdots \leqq \cdots \leqq a_{2} \leqq a_{1} \leqq a_{0}
$$

Furthermore, the inequality sign holds an infinite number of times here, so that we obtain an infinite chain joining $b=b_{0}$ to $a=a_{0}$, contrary to the hypothesis of the theorem.

[^0]: Received by the editors December 15, 1942.
 ${ }^{1}$ Oystein Ore, Chains in partially ordered sets, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 558-566.
 ${ }^{2}$ Terminology and notation follow the paper of Ore.

