
RADICAL EXTENSIONS AND CROSSED CHARACTERS 

REINHOLD BAER 

E. Witt1 has given a theory of abelian extensions of fields contain­
ing sufficiently many roots of unity which consists essentially, as has 
been remarked before,2 in applying the theory of characters of finite 
abelian groups. There exists now a sufficiently developed theory of 
crossed characters,3 and it is the object of this note to show that a 
fairly complete and simple theory of radical extensions may be ob­
tained if one follows Witt 's treatment4 of abelian extensions, only 
substituting for the classical theory of characters the theory of 
crossed characters.5 

Suppose that the commutative field6 K is a finite, normal, and 
separable extension of the field Fy that the characteristic of the field 
K is either 0 or prime to the given integer mf and that E is the group 
of the mth roots of unity contained7 in K. The Galois group G of the 
extension K of F consists of all the /^-automorphisms of the field K 
(automorphisms of the field K which leave the elements in F in­
variant). Every automorphism g in G induces in E an automorphism 
which we also denote by g, and the correspondence mapping the 
automorphism g in G upon the automorphism g oi E shall be de­
noted by C. 

A C-character of the group G is a single-valued G to E function 
ƒ(#)> satisfying the functional equation ƒ(u)vf(v) = ƒ(uv). 

LEMMA 1. The function vl~° of the element g in G, for v an element 
in Ky is a C-character of G if> and only ify vm is an element, not 0, in F. 

PROOF. If vl~° is a C-character of G, then vl~° is for every g in G 
an element in E, so that (vm)l~g = 1 for every g in G. Thus vm is a fixed 
element of the Galois group of K over F, proving that vm is an ele­
ment, not 0, in F. 

Assume conversely that vm?*0 is in F. Then (vl~0)m = (vm)l~d = l for 
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1 Witt [ l ] , [2]; the references refer to the bibliography at the end of the paper. 
2 Baer [ l ] . 
» Baer [2]. 
4 Or the treatment as suggested in Baer [ l] . 
5 The importance of the theory of crossed characters for the theory of radical 

extensions has recently been stressed by MacLane-Schilling [ l] . 
6 As all the fields will be commutative, we shall omit the word "commutative" in 

the future. 
7 K need not contain m distinct mth roots of unity; cp. Theorem 3 below. 
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every g in G, so that vl~~° is a single-valued G to £ function. If s, t 
are elements in G, then ^ 1""*' = i;1~^'""*' = (Î;1-*)^1""', and we have shown 
that v1"0 is a C-character of G. 

We denote, as customary, by F* the multiplicative group of the 
elements, not 0, in F, and it will be convenient to denote by Km the 
multiplicative group of those elements in K whose mth. power is 
in F*. Clearly F* is a subgroup of Km. 

THEOREM 1. An isomorphism of the group Km/F* upon the group 
of all the C-characters of G is effected by mapping the element v in Km 

upon the function vx~° of the elements in G. 

PROOF. I t is a consequence of Lemma 1 that vl~a is a C-character 
of G whenever v is an element in Kmi and it is readily seen that a 
homomorphism, of Km into the group of all the C-characters of G is 
effected by mapping v upon the function vl~° of the elements in G. 
Furthermore v1~g = l for every g in G if, and only if, v is an element 
in F*, as follows from the fundamental theorem of Galois theory, 
and this shows that exactly the elements in F* are mapped upon the 
C-character 1. To complete the proof of our theorem we need show 
only that8 every C-character of G may be represented in the form 
vx~° for some v in Km. Suppose therefore that f(g) is a C-character of 
G. Assume that there did not exist an element w in K such that 
E* ^ G Wf(g)7*0. Then £ , in G (wh)°f(g)=0 for every h in G and 
every w in K. Since the elements/(g) are different from 0 as elements 
in E, this implies that the determinant D(w) = \who\ = 0 for every 
w in K. But this is impossible, since the normal basis theorem9 as­
sures the existence of elements w in K such that D(W)T£Q. Conse­
quently there exists an element w in K such that v =]C<7 in G w°f(g) ^0. 
If h is some element in G, then 

vhf(h) « E w<*f(gyf{h) = x ; w^f(gk) = v, 
0 in G g in G 

since ƒ is a C-character and gh ranges over G with g. Since VT*0, we 
find that vl~h—f(h) for every h in G, and it is a consequence of 
Lemma 1 that v belongs to Km> as was to be shown. 

The following restatement of Theorem 1 will prove helpful: If V 
is a coset of Km/F*, then V1"9 is a C-character of G, and every 
C-character of G may be represented in one and only one way in 
the form Vl~g. 

8 The following arguments are essentially a restatement of a proof of Speiser [l] 
p. 3. 

9Cp. Deuring [ l ] . 
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We recall that a group B of C-charaeters of G is termed10 complete 
if B{g) = 1 implies g = l. 

THEOREM 2. Tf M is a multiplicative group between F* and Km, then 
the following two properties of M are equivalent : 

(i) K = F(M). 
(ii) The group of the C-characters Vl~g for V in M/F* is complete. 

PROOF. The statement (ii) is obviously equivalent to the fact that 
1 is the only ^(Af)-automorphism of ÜT, and that this fact is equiva­
lent to (i) is readily deduced from the Galois theory. 

The group G has been termed11 C-complete if 1 is the only element 
in G which is mapped upon 1 by every C-character of G. The follow­
ing statement is an immediate consequence of Theorem 2. 

COROLLARY 1. The group G is C-complete if, and only if, K may be 
obtained by adjoining to F mth roots of elements in F. 

The C-characters of G which have the form ex~° for suitable e in 
the group E have been termed principal C-characters of C, and the 
group of principal C-characters is called the principal genus. A com­
plete group of C-characters of G is said to be strictly complete if it 
contains the principal genus.12 

COROLLARY 2. If M is a multiplicative group between F* and Km, 
then the following two conditions are necessary and sufficient for the group 
of C-characters of the form Vl~° with V in M/F* to be strictly complete: 

(a) K = F(M); 
(b) M is the set of all the elements in K whose mth powers are in the 

subgroup Mm of F*. 

PROOF. I t is readily seen that condition (b) is equivalent to the 
inequality E^M, and hence (b) is true if, and only if, the group of 
C-characters of the form Vl~g for V in M/F* contains the principal 
genus. Thus Corollary 2 is an immediate consequence of Theorem 2. 

The importance of Corollary 2 stems from the comparative rarity 
of strictly complete groups of C-characters which are different from 
the group of all the C-characters.13 

If M is a group between F* and Km, then Mm is a group between 
F*m and K%QF*. However, the groups M/F* and Mm/F*m need not 
be isomorphic, since the homomorphism x—>xm maps upon 1 all the 
mth roots of unity in M, and these need not be in F*. 

10 Baer [2] introduction to chapter IV. 
11 Baer [2] 1.3. 
12 Baer [2] introduction to chapter IV. 
18 Baer [2] Corollary IV.4.2. 
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In an investigation of extensions by rath roots it is clearly no loss 
of generality to assume that m has been chosen as small as possible. 
Then the positive integer m has been determined in such a way that 
K = F(Km)} though F(Km

f) <K for every proper divisor m' of m, and 
this signifies in group-theoretical language that m is the maximum 
order of the elements in the multiplicative abelian group Km/F*. If 
we use the notation m=Y[ppm^p\ where the product ranges over all 
the prime numbers p and where almost all the exponents m(£)vanish, 
then the maximum order of the elements in Km/F* is m if, and only if, 
Km/F* contains elements of order pm(p) for every p, since the orders 
of the elements in Km/F* are clearly divisors of m. 

THEOREM 3. The following conditions are necessary and sufficient for 
m to be the maximum order of the elements in Km/F*: 

(a) K contains m distinct mth roots of unity, so that m is the order 
ofE. 

(b) If0<m{p)1 and if a pth root of unity different from 1 is contained 
in F, then K% is not part of F*P. 

PROOF. If condition (a) were not satisfied by K, then the order mf 

of E would be a proper divisor of m ; and if w is an element in Km, g an 
F-automorphism of K, then (wl~9)m' = 1, since wl~° belongs to £ , 
proving that wm' = (wm')g for every F-automorphism g of K, and that 
therefore every wm', for w in Km, is in F*. Hence the maximum order 
of the elements in Km/F* is a divisor of the proper divisor mr of my 

proving the necessity of (a). 
To prove the necessity of (b) we assume that (b) does not hold 

for some particular prime p. Then 0<m(p), F contains p distinct pth 
roots of unity (so that every pth root of unity is in F) and K%QF*f; 
and we are going to show that Km/F* does not contain elements of 
order pm(p\ Suppose namely that b is an element in K such that 
bptn P is in F*. Then there exists an integer r, prime to p, such that 
rmp-m(p)=zi modulo pm(p\ since mp-m(p) is itself prime to p. Hence 
b=brmp~mp modulo F*, and there exists therefore an e lement / in F* 
such that b = b™*-*% Since b^b^f-*9"* is in F*, it is in K£ 
and therefore in F*P. Thus there exists an element c in F* such that 
cp = brm. If we put d = cfpm(p)~\ then d is an element in F* and 
(6pwW-1rf-i)p = 6pw ( p ) / -p" , w^ = l. Hence e = b*mW-ld~i is a £th root 
of unity and as such is contained in F*y proving finally that bptn P l = ed 
is an element in F*. This completes the proof of the necessity of con­
dition (b). 

Suppose conversely that the conditions (a) and (b) are satisfied 
by K. If p is any prime number such that m(p) = 0 , then it is obvious 
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that Km/F* contains elements of order pm^ ( = 1). If 0<m(p), and 
if F* does not contain any pth roots of unity different from 1, then 
we infer from (a) that K contains a primitive pmip)th root of unity e; 
and it is obvious that the order of e modulo F* is exactly pm^\ prov­
ing again the existence of an element of order pmip) in Km/F*. If 
finally 0<m(p)y though F* contains pth roots of unity different from 
1, then we infer from condition (b) the existence of an element b 
in KZ which is not contained in F*v. I t is clear that b is an ele­
ment in F* and that there exists an element c in K satisfying 
b = c*m(p) = (c*Mp)~y. Since b is not in F*p, it is impossible that 
cp

m p -1 belongs to F*, though c*m P is in F*, and this shows that 
c is an element in K whose order modulo F* is exactly pm^K Thus we 
have shown that Km/F* contains elements of order pm(p) for every p, 
and that consequently the maximum order of the elements in Km/F* 
is exactly m, as was to be proved. 

REMARKS. 1. If K = F(Km), then condition (a) may be seen readily 
to be equivalent to the following condition: 

(a') K is obtained by adjoining to F all the mth roots of the elements 
in the subgroup K% of F*. 

On the basis of Theorem 3 we may restrict ourselves without loss 
of generality to the consideration of extensions K of F which meet the 
requirement (a')« 

2. Since the second root of unity —1 is always contained in F, it 
follows from 0<m(2) that the characteristic of -F is different from 2, 
and that therefore condition (b) implies KZQF*2-

3. Suppose that 0<m(p). I t is well known that an automorphism 
of a cyclic group of order pm(p) possesses fixed elements different from 
1 if, and only if, the order of the automorphism under consideration is 
a power of p. We note furthermore that a pth root of unity different 
from 1 is contained in F if, and only if, it is contained in K and is 
left invariant by every /^-automorphism of K. Thus it follows that the 
condition (b) is equivalent to the following condition (b')> provided 
(a) is satisfied by K. 

(b') If 0<m(p), and if the group of automorphisms induced by 
F-automorphisms of K in the group of the pm{p)th roots of unity in K is 
of order a power of p, then KZQF**. 

For a further analysis it will be necessary to translate the funda­
mental concepts of the theory of crossed characters into concepts 
from the theory of extensions of fields. We denote by E(p) the group 
of the pm(p)th roots of unity in K so that E is the direct product of 
its cyclic subgroups E(p) ; we note that condition (a) of Theorem 3 
is equivalent to the assertion that E(p) is of order pm(p) for every p. 
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As we denoted by C the homomorphism mapping the ^-automor­
phism g of K upon the automorphism g of E which it induces in E, 
so we denote by Cp the homomorphism of G which maps g in G upon 
the automorphism g which it induces in E(p). The groups Gc and GcP 

consist of all those elements in G which induce in E and E(p) respec­
tively the identity automorphism, and we find that Gc is the group of 
F(E)-automorphisms of K, and that GcP is the group of F(E(p))~ 
automorphisms of K. The subgroup H(p) of G has been defined14 as 
the group of all those elements in G which are mapped upon 1 by 
every C£-character of G, and it is an immediate consequence of Theo­
rem 1 that H(p) is the group of all the F(Kpm(P))-automorphisms of K. 

THEOREM 4. There exists one and only one multiplicative group S be­
tween F*m and F* such that K may be obtained by adjoining all the mth 
roots of elements in S to F if, and only if, the following conditions are 
satisfied by K: 

(i) K contains m distinct mth roots of unity, and K = F(Km). 
(ii) If the element g in GcP is of order p modulo H(p), then it is con­

tained in H(p)Gc. 
(iii) If 1 <m(2), and if there exists an F-automorphism of K which 

maps every element in E{2) upon its inverse, then G/(H(2)GG^) is not 
commutative. 

PROOF. I t is readily verified that condition (i) is necessary and 
sufficient for the existence of at least one group S between F*m and F* 
such that K may be obtained by adjoining all the mth roots of ele­
ments in S to F (take S = K%). If (i) is satisfied, then there exists one 
and only one group S with the required property if, and only if, Km is 
the only group T between F* and Km such that K = F(T) and EÇ1T. 
I t is an immediate consequence of Theorem 2 and of Corollary 2 to 
Theorem 2 that Km is the only group T between F*E and Km satisfy­
ing K = F(T) if, and only if, the group of all the C-characters of G 
is the only strictly complete group of C-characters of G; and that this 
later property is equivalent to conditions (ii) and (iii) is an immediate 
consequence of Baer [2], Corollary IV.4.2. 

On account of the considerations centered around Theorem 3 we 
define: the field K is an m-extension of its sub field F if (1) K is finite, 
normal, separable over F; (2) K contains m distinct mth roots of unity*, 
(3) K = F(Km)- We note that (2) implies in particular that the char­
acteristic of K is either 0 or prime to m. 

If K is an ^-extension of F, then K may be obtained by adjoining 
to F all the mth roots of elements in the multiplicative group K% be-

14 Baer [2] 1.3; for a more detailed analysis of H(p)f cp. Baer [2] IÏÏ 2. 
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tween JF*W and i7*; and it is obvious that K is uniquely determined, 
up to equivalence, by m and K%. 

THEOREM 5. If S is a multiplicative group between F*m and F*, then 
the following conditions are necessary and sufficient for obtaining an 
m-extension of F by adjoining to F all15 the mth roots of elements in S. 

(i) The characteristic of F is either 0 or prime to m. 
(ii) S/F*m is a finite group. 

PROOF. The necessity of (i) has been pointed out before. To show 
the necessity of (ii), we consider an m-extension K of F which may be 
generated by adjoining the mth roots of elements in S to F. Then 
K = F(Km) and F*mQSQK%QF*. I t is a consequence of the finite-
ness of K over F and of Theorem 1 that Km/F* is a finite group. 
A homomorphism of Km/F* upon K2/F*m is effected by mapping the 
element x in Km upon the element xm in K%, proving the finiteness of 
KZ/F*m, and this implies the necessity of condition (ii). 

The sufficiency of the conditions (i) and (ii) is readily verified. 
Our theory would be complete if we could prove that different 

groups S between F*m and F*, meeting the above requirements (i), 
(ii), lead to essentially different m-extensions. This, however, cannot 
be expected, as may be seen from Theorem 4. 

We are now going to impose two conditions upon the Galois group 
of the equation xm — 1 = 0 in the field F. This equation is supposed to 
be separable, a property t h a t may be expressed in two equivalent 
ways by saying either that the characteristic of F, if not 0, should be 
prime to m, or that the equation has m distinct roots in a suitable 
extension of F. Properties of the Galois group of xm—1=0 are best 
described by using some finite, normal, and separable extension of F 
which contains m distinct mth roots of unity, as the Galois group of 
the equation is independent of the particular choice of this extension. 
Thus we denote by E the group of the m distinct mth roots of unity 
contained in some finite, normal, separable extension H of F (for ex­
ample, H=F(E)), and by E(p) the subgroup of E consisting of the 
pm^th roots of unity. Now we may state our two requirements, as 
follows : 

(A) If 1 <m(2), then none of the automorphisms of the group E, con­
tained in the Galois group of xm — 1 = 0 over F, maps every element in 
E(2) upon its inverse. 

(B) If the automorphisms of the Galois group of xm —1=0 over F 
induce in E(p) a group of order a power of p, and if E(p)9élf then 

15 This is best understood by restricting one's attention to subfields of some fixed 
algebraically closed extension of the field F. 



708 REINHOLD BAER [October 

the order of every automorphism in the Galois group of xm — 1 = 0 over F 
which leaves the elements in E(p) invariant is prime to p. 

I t should be noted that condition (A) concerns only the Galois 
group of #2W(2) — 1 =; 0 over F, whereas (B) may be restated without 
reference to the groups E, E(p) as follows: 

(BO If the Galois group of ^ W ( P ) - 1 = 0 over F is of order a power 
of p, and if 0<m(p)y then the modulo xptn P —1=0 reduced Galois group 
of xm — 1 = 0 over F is of an order prime to p. 

Witt in his theory of abelian extensions*6 had to require that m 
distinct rath roots of unity are contained in F. If we substitute for 
this condition the above properties (A), (B), then we obtain an ex­
tension of Witt 's theory which comprises certain classes of ra-exten-
sions, as may be seen from the next theorem together with our re­
marks in connection with Theorem 5. 

THEOREM 6. If conditions (A) and (B) are satisfied by the field F 
and the integer m (which is prime to the characteristic of F in case the 
characteristic of F should be different from 0), if S and T are multi­
plicative groups between F*m and i7*, and if S/F*m and T/F*m are both 
finite groups, then the following two properties imply each other: 

(i) S=T. 
(ii) The extensions of F which are obtained by adjoining to F all the 

mth roots of elements in S and in T respectively are equivalent. 

PROOF. I t has been pointed out before that (ii) is a consequence of 
(i). If conversely (ii) is satisfied by S and T, then there exists a finite, 
normal, separable extension K of F such that K = F(S') = F(T') where 
X' (for X = 5 or T) is the group of all the elements in K whose mth 
powers are in X and X' consists of all the mth roots of elements in X. 
Clearly X is a group between F* and Km which contains m distinct 
mth roots of unity. I t is a consequence of Theorem 2 and of Corol­
lary 2 that X'/F* is (essentially) a strictly complete group of C-char-
acters of G. I t is a consequence of conditions (A), (B) and of Baer [2], 
Theorem IV. 1.1, that the only strictly complete group of C-characters 
of G is the group of all the C-characters of G. But it follows from Theo­
rem 1 that this latter group is essentially the same as Km/F*, proving 
that X' = Km. Thus we have shown that S' = T' = Km, and this im­
plies clearly S=T. 

REMARK. If m is in particular an odd prime power, then conditions 
(A) and (B) are satisfied by F and m ; if m is a power of 2, then (B) is 
satisfied by F and m, and (A) would be satisfied, for example, if F 

"Witt [1]. 



i943l RADICAL EXTENSIONS AND CROSSED CHARACTERS 709 

contained all the fourth roots of unity. In these cases the above theo­
rem may be applied without reservation. 

In case condition (B) is not satisfied by .Fand m, we have to analyze 
the situation still further in order to obtain an extension of Theo­
rem 6. 

If K is an m-extension of F, then K = F(Km), and the multiplicative 
group Km is the product of the multiplicative groups Kpm(P) consisting 
of all the elements in K whose pm^p)th power is in F*. Clearly K is 
the composite of its uniquely determined subfields F(Kpm(P))=Kip), 
and it is readily verified that K^p) is a pm{p)-extension of F. I t has 
been remarked just now that condition (B) is satisfied by 7? and pm^\ 
and thus Theorem 6 may be applied upon K(p), provided (A) is satis­
fied by F and 2w(2). Furthermore it should be remarked that a com­
posite of pmip)-extensions of F i s an m-extension of F. Combining these 
remarks with Theorem 5 we obtain the following result. 

THEOREM 7. Suppose that the characteristic of the field F is either 0 
or prime to the integer m. 

(a) The field K is an m-extension of the field F if, and only if, there 
exists, for every prime p, a multiplicative group Sp between F*pWl P and 
F* such that Sp/F*ptn P is finite, and such that K is obtained by adjoin­
ing to F all the pm(p)th roots of the elements in Sp. 

(b) If condition (A) is satisfied by F and m, if Sp and Tp are, for 
every p, multiplicative groups between F*pm P and F* such that, both 
Sp/F*pmp and Tp/F*ptnp are finite, then the following two properties 
are equivalent: 

(b, i) Sp=Tpfor every prime p. 
(b, ii) The m-extensions of F which are determined by the Sp and by 

the Tp respectively through statement (a) are equivalent extensions of F. 

If, however, condition (A) fails to hold, then we have to fall back 
upon Theorem 4. 
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