TWO NOTES ON MEASURE THEORY

EDWIN HEWITT

I. In a recent paper [1],¹ Saks has indicated a construction whereby a Carathéodory outer measure can be produced on any compact metric space M, provided that a certain linear functional Φ is defined on the set \mathfrak{C} of all continuous real-valued functions whose domain is M. The functional Φ is required to be non-negative for non-negative functions, and to have the property that if the sequence $\{f_n\}$ has the uniform limit 0, then the sequence $\Phi(f_n)$ is a null-sequence. (The measure itself can be defined without this last property.) The purpose of this note is to show that such a linear functional always exists, in a non-trivial form, specifically, so that $\Phi(1) = 1$.

We consider the set \mathfrak{C} as a linear space, and together with \mathfrak{C} the linear space $\Re \subset \mathbb{C}$, where \Re consists of all constant functions. On the entire space \mathfrak{G} , we define a functional $p(f) = \sup_{x \in M} f(x)$. This least upper bound always exists, since M, being a compact metric space, is a bicompact space, on which every continuous real-valued function is bounded. It is easy to verify that $p(f+g) \leq p(f) + p(g)$, for all f, $g \in \mathbb{G}$, and that p(tf) = tp(f) whenever t is a non-negative real number. We define a linear functional Φ on the subspace \Re as follows: $\Phi(f) = f(x)$ for an arbitrary $x \in M$. It is clear that $\Phi(f) = \rho(f)$ for $f \in \Re$ and that Φ is linear on \Re . By virtue of the celebrated theorem of Hahn-Banach, it appears that Φ can be extended linearly to all of \mathfrak{C} in such a fashion that $\Phi(f) \leq p(f)$ for all $f \in \mathfrak{C}$. We further observe that Φ may be taken non-negative for non-negative functions. For, if Φ has been defined by the Hahn-Banach construction for all $f \in \mathfrak{B}$, where $\mathfrak{R} \subset \mathfrak{B} \subset \mathfrak{C}$, $\mathfrak{B} \neq \mathfrak{C}$, and if $g \in \mathfrak{C} - \mathfrak{B}$ and $g \geq 0$, then the number $a = \inf_{f \in \mathfrak{B}} (p(f+g) - \Phi(f))$ is an upper bound to possible values for $\Phi(g)$. a, however, is plainly non-negative, so that $\Phi(g)$ may always be taken non-negative. Suppose now that the sequence of functions $\{f_n\}$ has the uniform limit 0. The function $\epsilon - f_n$ is nonnegative for all $n > N(\epsilon)$, $N(\epsilon)$ being some natural number dependent upon the arbitrary positive number ϵ . Accordingly, $\Phi(\epsilon - f_n) = \Phi(\epsilon)$ $-\Phi(f_n) = \epsilon \Phi(1) - \Phi(f_n) = \epsilon - \Phi(f_n) \ge 0$. Likewise, it is easy to show that $\epsilon + \Phi(f_n) \geq 0$ for all sufficiently large n. It follows at once that $\lim_{n\to\infty} \Phi(f_n) = 0$. It is proved in Saks [1] that the functional Φ can

Received by the editors January 7, 1943.

¹ Numbers in brackets refer to correspondingly numbered articles in the bibliography at the end of the paper.

be used to define a Carathéodory outer measure under which every Borel set is measurable.

II. The present note has as its object the proof of the following result.

THEOREM. If E is any infinite set, there exists a non-negative realvalued function Γ defined on all subsets of E such that:

(1) $\Gamma(A \cup B) \leq \Gamma(A) + \Gamma(B);$

(2) $\Gamma(A) \leq \Gamma(B)$ if $A \subset B$;

(3) $\Gamma(\sum_{n=1}^{\infty}A_n) = \sum_{n=1}^{\infty}\Gamma(A_n)$ if $A_n \cap A_m = 0$ for $m \neq n$;

(4) $\Gamma(E) = 1;$

(5) $\Gamma(0) = 0;$

(6) the function Γ assumes an infinite number of different values; (7) $\Gamma(\{p\})=0$ for all points $p \in E$ except for those in a countable subset of E.

Since Ulam has proved that a function enjoying properties (4) and (3) cannot vanish for all subsets containing exactly one point (where E has any of a wide class of cardinal numbers), it appears that the present theorem is the strongest result possible.

The proof of this theorem depends upon a consideration of the family \mathfrak{B} of all bounded real-valued functions defined on the set E. As in the preceding note, it is easy to prove the existence of a linear functional Φ defined on the family \mathfrak{B} considered as a linear space. The construction, for our present purposes, will be considered in more detail. Let E be partitioned into \aleph_0 disjoint sets E_1, E_2, E_3, \cdots , E_n, \cdots , each having cardinal number equal to the cardinal number of E. Let ω_n be the characteristic function of the set E_n . It is obvious that $\omega_n \in \mathfrak{B}$ for every *n*. We shall first define the linear functional Φ on the linear spaces $\mathfrak{P}_1, \mathfrak{P}_2, \mathfrak{P}_3, \cdots, \mathfrak{P}_n, \cdots$ obtained from \mathfrak{R} , the space of constant functions, by adjoining $\omega_1, \omega_2, \omega_3, \cdots, \omega_n, \cdots$ in succession and forming all possible linear combinations. As in the preceding note, we define p(f) as $\sup_{x \in E} f(x)$, and $\Phi(f)$ as f(x) for $f \in \Re$, x being any point of E. By the Hahn-Banach construction, if $\Phi(f)$ is to be bounded by p(f), we must have, when we calculate $\Phi(\omega_1), a_1 \leq \Phi(\omega_1) \leq b_1$, where $a_1 = \sup_{f \in \mathfrak{R}} (-p(-f - \omega_1) - \Phi(f))$ and $b_1 = \inf_{f \in \Re} (p(f + \omega_1) - \Phi(f))$. It is easy to show that $b_1 = 1$ and that $a_1 = 0$. We may, then, in accordance with the Hahn-Banach construction, take $\Phi(\omega_1)$ as 1/2.

The numbers $a_2 = \sup_{f \in \mathfrak{P}_1} (-p(-f-\omega_2) - \Phi(f))$ and $b_2 = \inf_{f \in \mathfrak{P}_1} (p(f+\omega_2) - \Phi(f))$ are lower and upper bounds, respectively, for $\Phi(\omega_2)$. a_2 may be computed as 0, and b_2 , as it is easy to see, is equal

720

to 1/2. We may thus put $\Phi(\omega_2) = 1/4$. This process may be continued by finite induction; it is found that the function ω_n may be assigned the value $1/2^n$ under the functional Φ . Φ having been defined for the linear space generated by \Re and the sequence $\{\omega_n\}$, the Hahn-Banach construction is carried out for the rest of \mathfrak{B} in any fashion consonant with the restrictions of that theorem, provided that $\Phi(f) \geq 0$ for non-negative functions f. We thus have a linear nonnegative functional defined on all of the space \mathfrak{B} .

The measure $\Gamma(A)$ for every subset A of E can now be defined: $\Gamma(A) = \Phi(\omega_A)$, ω_A being the characteristic function of the set A. Properties (1)-(7) can now be established. It is plain that $\omega_{A\cup B} \leq \omega_A + \omega_B$, whence $\Phi(\omega_A + \omega_B - \omega_{A\cup B}) \geq 0$, and consequently $\Phi(\omega_{A\cup B}) \leq \Phi(\omega_A) + \Phi(\omega_B)$, which inequality establishes (1). It is also obvious that $A \subset B$ implies that $\omega_A \leq \omega_B$. From this, we infer property (2).

We examine (3) in some detail. If A and B are disjoint sets, it follows that $\omega_{A\cup B} = \omega_A + \omega_B$, and consequently $\Phi(\omega_{A\cup B}) = \Phi(\omega_A)$ $+ \Phi(\omega_B)$, that is, the measure is additive for all subsets of E. We may thus state that all subsets of E are measurable in the sense of Carathéodory. It is easy to prove from this fact that if $\{A_n\}$ is any sequence of pairwise disjoint sets, then $\Gamma(\sum_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \Gamma(A_n)$. The proof may be carried over word for word from a similar proof in Saks [2, chap. 2, §4, p. 44, Theorem 4.1].

Statements (4), (5), and (6) are immediate consequences of the definitions of Φ and Γ .

To prove that Γ vanishes for all points except those in a countable subset, we assume the contrary. If an uncountable set T of points exist such that $\Gamma(\{p\}) > 0$ for every $p \in T$, then there is some $\epsilon > 0$ with $\Gamma(\{p_n\}) > \epsilon$, where $p_n \in T$, and $n = 1, 2, 3, \cdots$. On account of property (3), we have $\Gamma(\sum_{n=1}^{\infty} \{p_n\}) = \sum_{n=1}^{\infty} \Gamma(\{p_n\}) = \infty$. Since $1 = \Gamma(E) \ge \Gamma(\sum_{n=1}^{\infty} \{p_n\})$, a contradiction is apparent.

BIBLIOGRAPHY

1. S. Saks, Integration in abstract spaces, Duke Math. J. vol. 4 (1938) pp. 408-411.

2. ——, Theory of the integral, Monografie Matematyczne, Warszawa, 1937.

3. S. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. vol. 16 pp. 140-150.

HARVARD UNIVERSITY