ON CERTAIN PAIRS OF SURFACES IN ORDINARY SPACE

BUCHIN SU

1. Introduction. In a recent paper ${ }^{1}$ Jesse Douglas has proposed and solved the following problem: To determine the form of the linear element of a surface in ordinary space upon which exists a family of ∞^{2} curves possessing two properties: (1) The angular excess of any triangle $A B C$ formed by curves of the family \mathcal{F} is proportional to the area of the triangle:

$$
\begin{equation*}
\mathcal{E}=A+B+C-\pi=k \subset A, \tag{1}
\end{equation*}
$$

where k denotes a constant; (2) The curves of \mathcal{F} are a linear system; that is, a point transformation exists which converts them into the straight lines of a plane. It is natural to inquire what class of surfaces we shall obtain if, instead of using property (2), we make the less specific demand that a point transformation exists which converts the curves of \mathcal{F} into the geodesics of another surface. Here we have found certain pairs of surfaces S and S_{1} which furnish the complete solution of our generalized problem. According to whether the constant k is zero or not, the linear elements of S and S_{1} take different types, whose derivation constitutes the purpose of the present paper.
2. Conditions for the property $\mathcal{E}=k \mathcal{A}$. As was shown by Douglas, ${ }^{2}$ the necessary and sufficient conditions that every curve of a family \mathcal{F} upon a surface S should have the property $\mathcal{E}=k \mathcal{A} \mathcal{A}$ can be expressed by the relation

$$
\begin{equation*}
d s / \rho=P d u+Q d v \tag{2}
\end{equation*}
$$

where $1 / \rho$ is the geodesic curvature of the curve and P, Q obey the condition.

$$
\begin{equation*}
Q_{u}-P_{v}=(k-K) W \tag{3}
\end{equation*}
$$

For the subsequent discussion it is convenient to consider both surfaces S and S_{1}, wherein the curves of \mathcal{F} upon S correspond to the geodesics of S_{1}. Let (u, v) be general coordinates of the corresponding points on these surfaces, so that the first fundamental form of S is

[^0]\[

$$
\begin{equation*}
d s^{2}=E d u^{2}+2 F d u d v+G d v^{2} \tag{4}
\end{equation*}
$$

\]

and that of S_{1} is

$$
\begin{equation*}
d s_{1}^{2}=E_{1} d u^{2}+2 F_{1} d u d v+G_{1} d v^{2} . \tag{5}
\end{equation*}
$$

According to the classical theorem of Tissot, ${ }^{3}$ there exists upon S one and, in general, only one orthogonal system of curves which corresponds to an orthogonal system upon S_{1}. Suppose that these surfaces S and S_{1} are referred to the orthogonal curves which correspond to each other; then we have

$$
\begin{align*}
& d s^{2}=E d u^{2}+G d v^{2} \tag{6}\\
& d s_{1}^{2}=E_{1} d u^{2}+G_{1} d v^{2} \tag{7}
\end{align*}
$$

In orthogonal coordinates (u, v), the geodesic curvature $1 / \rho$ of any curve $v=v(u)$ upon the surface S is given by ${ }^{4}$

$$
\begin{align*}
& d s / \rho=(E G)^{-1 / 2}\left(E+G v^{\prime 2}\right)^{-1}\left\{E G v^{\prime \prime}-(1 / 2) E E_{v}\right. \tag{8}\\
& \left.\quad+\left(E G_{u}-(1 / 2) G E_{u}\right) v^{\prime}+\left((1 / 2) E G_{v}-G E_{v}\right) v^{\prime 2}+(1 / 2) G G_{u} v^{\prime 3}\right\} d u
\end{align*}
$$

Therefore, for a family \mathcal{F}, we have by (2):

$$
\begin{equation*}
v^{\prime \prime}=A+B v^{\prime}+C v^{\prime 2}+D v^{\prime 3} \tag{9}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
A=(1 / 2) E_{v} / G+(E / G)^{1 / 2} P \tag{10}\\
B=(1 / 2) E_{u} / E-G_{u} / G+(E / G)^{1 / 2} Q \\
C=E_{v} / E-(1 / 2) G_{v} / G+(G / E)^{1 / 2} P \\
D=-(1 / 2) G_{u} / E+(G / E)^{1 / 2} Q
\end{array}\right.
$$

and

$$
\begin{equation*}
Q_{u}-P_{v}=(k-K)(E G)^{1 / 2} \tag{11}
\end{equation*}
$$

That is: the form (9) with additional condition (11) is characteristic of curves having the property $\mathcal{E}=k \mathcal{A}$ upon the surface S.
3. Geodesic representation of the family \mathcal{F}. We now have to impose the further property on the family \mathcal{F}.

Since the parametric curves on the surface S_{1} form an orthogonal system, the differential equation of geodesics of S_{1} is found to be ${ }^{5}$

[^1]\[

$$
\begin{align*}
v^{\prime \prime}=\frac{1}{2} & \frac{\partial E_{1}}{\partial v} / G_{1}+\left(\frac{1}{2} \frac{\partial E_{1}}{\partial u} / E_{1}-\frac{\partial G_{1}}{\partial u} / G_{1}\right) v^{\prime} \\
& +\left(\frac{\partial E_{1}}{\partial v} / E_{1}-\frac{1}{2} \frac{\partial G_{1}}{\partial v} / G_{1}\right) v^{\prime 2}-\frac{1}{2}\left(\frac{\partial G_{1}}{\partial u} / E_{1}\right) v^{\prime 3} . \tag{12}
\end{align*}
$$
\]

In order that they should correspond to the curves of the family 7 upon S, it is necessary and sufficient that the differential equations (9) and (12) be coincident with each other. This gives

$$
\left\{\begin{array}{l}
\frac{1}{2} \frac{\partial E}{\partial v} / G+(E / G)^{1 / 2} P=\frac{1}{2} \frac{\partial E_{1}}{\partial v} / G_{1}, \\
\frac{1}{2} \frac{\partial E}{\partial u} / E-\frac{\partial G}{\partial u} / G+(E / G)^{1 / 2} Q=\frac{1}{2} \frac{\partial E_{1}}{\partial u} / E_{1}-\frac{\partial G_{1}}{\partial u} / G_{1}, \tag{13}\\
\frac{\partial E}{\partial v} / E-\frac{1}{2} \frac{\partial G}{\partial v} / G+(G / E)^{1 / 2} P=\frac{\partial E_{1}}{\partial v} / E_{1}-\frac{1}{2} \frac{\partial G_{1}}{\partial v} / G_{1}, \\
\frac{1}{2} \frac{\partial G}{\partial u} / E-(G / E)^{1 / 2} Q=\frac{1}{2} \frac{\partial G_{1}}{\partial u} / E_{1} .
\end{array}\right.
$$

From the first and the last of these equations we have the expressions for P and Q :

$$
\left\{\begin{array}{l}
P=\frac{1}{2}(G / E)^{1 / 2}\left\{\frac{\partial E_{1}}{\partial v} / G_{1}-\frac{\partial E}{\partial v} / G\right\} \tag{14}\\
Q=\frac{1}{2}(E / G)^{1 / 2}\left\{\frac{\partial G}{\partial u} / E-\frac{\partial G_{1}}{\partial u} / E_{1}\right\}
\end{array}\right.
$$

Substitution of these expressions in the remaining equations of (13) shows that the fundamental quantities $E, G ; E_{1}, G_{1}$ are related by

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial v} \log \frac{E G_{1}}{G E_{1}}=\left(1-\frac{G E_{1}}{E G_{1}}\right) \frac{\partial \log E_{1}}{\partial v} \tag{15}\\
\frac{\partial}{\partial u} \log \frac{E G_{1}}{G E_{1}}=\left(\frac{E G_{1}}{G E_{1}}-1\right) \frac{\partial \log G_{1}}{\partial u}
\end{array}\right.
$$

In interpreting these conditions, it is important to distinguish the case $(E / G):\left(E_{1} / G_{1}\right)=1$ from $(E / G):\left(E_{1} / G_{1}\right) \neq 1$. If $(E / G):\left(E_{1} / G_{1}\right)=1$, then we can put

$$
\begin{equation*}
E_{1}=\rho E, \quad G_{1}=\rho G \tag{16}
\end{equation*}
$$

where $\rho \neq 0$, so that the surfaces S and S_{1} are conformal. In this case the equations (15) are satisfied identically, while the equations (14) give

$$
\left\{\begin{array}{l}
P=\frac{1}{2}(E / G)^{1 / 2} \frac{\partial \log \rho}{\partial v} \tag{17}\\
Q=-\frac{1}{2}(G / E)^{1 / 2} \frac{\partial \log \rho}{\partial u}
\end{array}\right.
$$

Substituting these expressions in (11) we have

$$
\begin{align*}
\frac{\partial}{\partial v}\left\{(E / G)^{1 / 2} \frac{\partial \log \rho}{\partial v}\right\}+\frac{\partial}{\partial u} & \left\{(G / E)^{1 / 2} \frac{\partial \log \rho}{\partial u}\right\} \tag{18}\\
& +2(k-K)(E G)^{1 / 2}=0
\end{align*}
$$

This condition can be interpreted geometrically as follows: by means of the formula of G. Frobenius for Gaussian curvature ${ }^{6}$ we obtain for the surface S with linear element (6)

$$
\begin{equation*}
K=-\frac{1}{2 W}\left\{\frac{\partial}{\partial v}\left(E_{v} / W\right)+\frac{\partial}{\partial u}\left(G_{u} / W\right)\right\} \tag{19}
\end{equation*}
$$

where $W=(E G)^{1 / 2}$, and similarly, for the surface S_{1} with linear element (7)

$$
\begin{equation*}
K_{1}=-\frac{1}{2 W_{1}}\left\{\frac{\partial}{\partial v}\left(\frac{\partial E_{1}}{\partial v} / W_{1}\right)+\frac{\partial}{\partial u}\left(\frac{\partial G_{1}}{\partial u} / W_{1}\right)\right\} \tag{20}
\end{equation*}
$$

where $W_{1}=\left(E_{1} G_{1}\right)^{1 / 2}$.
If the expressions of E_{1} and G_{1} given by (16) are substituted in the right-hand member of (20), then

$$
\begin{aligned}
K_{1}= & -\frac{1}{2 \rho W}\left\{\frac{\partial}{\partial v}\left(E_{v} / W\right)+\frac{\partial}{\partial u}\left(G_{u} / W\right)\right\} \\
& -\frac{1}{2 \rho W}\left\{\frac{\partial}{\partial v}\left((E / G)^{1 / 2} \frac{\partial \log \rho}{\partial v}\right)+\frac{\partial}{\partial u}\left((G / E)^{1 / 2} \frac{\partial \log \rho}{\partial u}\right)\right\} .
\end{aligned}
$$

A reference to (18) and (19) gives immediately the relation

$$
\begin{equation*}
\rho K_{1}=k \tag{21}
\end{equation*}
$$

which is, of course, equivalent to (18).
If $k \neq 0$, then we have

[^2]\[

\left\{$$
\begin{array}{l}
d s^{2}=\left(K_{1} / k\right)\left(E_{1} d u^{2}+G_{1} d v^{2}\right) \tag{22}\\
d s_{1}^{2}=E_{1} d u^{2}+G_{1} d v^{2}
\end{array}
$$\right.
\]

Therefore the surface S_{1} may be arbitrarily selected, the only restriction being that it is non-developable, and any surface S, necessarily conformal to S_{1}, with the linear element

$$
\begin{equation*}
d s^{2}=\left(K_{1} / k\right) d s_{1}^{2} \tag{23}
\end{equation*}
$$

possesses the two stated properties, where K_{1} is the Gaussian curvature of S_{1} and k a constant different from zero. In particular when a surface of constant Gaussian curvature k is taken for S_{1}, the corresponding surface S is applicable to S_{1}.

This result not only proves the existence but also furnishes a remarkable class of the surfaces under consideration.

On the contrary, if $k=0$ in the relation (21), then K_{1} must necessarily vanish, because ρ is by no means zero, so that the surface S_{1} is developable. In this case, the surface S is arbitrary and \mathcal{F} must be a conformal image of the ∞^{2} straight lines of a plane. That no other family of curves upon a generic surface S can be linear and such that the sum of the angles in every triangle of curves in the family is two right angles has been proved analytically by E. Kasner ${ }^{7}$ and synthetically by J. Douglas. ${ }^{8}$

We now consider the case where

$$
\begin{equation*}
(E / G):\left(E_{1} / G_{1}\right) \neq 1 \tag{24}
\end{equation*}
$$

The partial differential equations (15) are easily integrated, and the result may be written in the form

$$
\begin{equation*}
\left(E G_{1}\right) /\left(G E_{1}\right)=1-E_{1} U^{2}, \quad\left(G E_{1}\right) /\left(E G_{1}\right)=1+G_{1} V^{2} \tag{25}
\end{equation*}
$$

where U denotes any function of u alone, and V any function of v alone. The assumption (24) shows that neither U nor V is zero.

From (25) follows the relation

$$
\begin{equation*}
E_{1} U^{2}\left(G_{1} V^{2}+2\right)=G_{1} V^{2}\left(2-E_{1} U^{2}\right) \tag{26}
\end{equation*}
$$

It may happen that both members of (26) are zero. Since E_{1}, G_{1}, U, V are different from zero, we have in this case

[^3]\[

$$
\begin{equation*}
E_{1}=2 U^{-2}, \quad G_{1}=-2 V^{-2} \tag{27}
\end{equation*}
$$

\]

so that

$$
\begin{equation*}
E / G=V^{2} / U^{2} \tag{28}
\end{equation*}
$$

The expressions (14) now become

$$
\begin{equation*}
P=-\frac{1}{2} \frac{V}{U} \frac{\partial \log E}{\partial v}, \quad Q=\frac{1}{2} \frac{U}{V} \frac{\partial \log G}{\partial u} \tag{29}
\end{equation*}
$$

Substituting them in (18) and remembering the formula (19) in addition to the relation (28), we obtain

$$
\begin{equation*}
k=0 \tag{30}
\end{equation*}
$$

That is, the sum of the angles in every triangle formed by three curves of the family \mathcal{F} under consideration must be two right angles, and the linear elements of the surfaces S and S_{1} are, after a suitable transformation of the type

$$
\begin{equation*}
\bar{u}=\phi(u), \quad \bar{v}=\psi(v) \tag{31}
\end{equation*}
$$

reducible to the form

$$
\left\{\begin{array}{l}
d s^{2}=\lambda(u, v)\left(d u^{2}+d v^{2}\right) \tag{32}\\
d s_{1}^{2}=d u^{2}-d v^{2}
\end{array}\right.
$$

It remains for us to consider the case

$$
\begin{equation*}
\left(2-E_{1} U^{2}\right)\left(G_{1} V^{2}+2\right) \neq 0 \tag{33}
\end{equation*}
$$

Setting (26) in the form

$$
\begin{equation*}
\left(E_{1} U^{2}\right) /\left(2-E_{1} U^{2}\right)=\left(G_{1} V^{2}\right)\left(G_{1} V^{2}+2\right)=\tau \tag{34}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
E_{1}=2 \tau(1+\tau)^{-1} U^{-2}, \quad G_{1}=2 \tau(1-\tau)^{-1} V^{-2} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
(E / G)^{1 / 2}=(1-\tau)(1+\tau)^{-1} V U^{-1} \tag{36}
\end{equation*}
$$

The expressions (14) for P and Q may be written in the form

$$
\left\{\begin{array}{l}
P=\frac{1}{2}\left\{\frac{V}{U} \frac{\partial \log E_{1}}{\partial v}-\frac{1}{W} \frac{\partial E}{\partial v}\right\} \tag{37}\\
Q=-\frac{1}{2}\left\{\frac{U}{V} \frac{\partial \log G_{1}}{\partial u}-\frac{1}{W} \frac{\partial G}{\partial u}\right\}
\end{array}\right.
$$

Consequently, we have

$$
\begin{aligned}
Q_{u}-P_{v}=-\frac{1}{2 V} & \frac{\partial}{\partial u}\left(U \frac{\partial}{\partial u} \log G_{1}\right)-\frac{1}{2 U} \frac{\partial}{\partial v}\left(V \frac{\partial}{\partial v} \log E_{1}\right) \\
+ & \frac{1}{2}\left\{\frac{\partial}{\partial u}\left(G_{u} / W\right)+\frac{\partial}{\partial v}\left(E_{v} / W\right)\right\}
\end{aligned}
$$

namely,

$$
\begin{align*}
Q_{u}-P_{v}= & -\frac{1}{2 V} \frac{\partial}{\partial u}\left(U \frac{\partial}{\partial u} \log G_{1}\right) \\
& -\frac{1}{2 U} \frac{\partial}{\partial v}\left(V \frac{\partial}{\partial v} \log E_{1}\right)-W K \tag{38}
\end{align*}
$$

as may easily be seen on account of (19). By comparison of (38) with (11) it follows that

$$
\begin{equation*}
2 k(E G)^{1 / 2}=-\frac{1}{V} \frac{\partial}{\partial u}\left(U \frac{\partial}{\partial u} \log G_{1}\right)-\frac{1}{U} \frac{\partial}{\partial v}\left(V \frac{\partial}{\partial v} \log E_{1}\right) . \tag{39}
\end{equation*}
$$

In virtue of (35) we reach the relation:

$$
\begin{equation*}
2 k(E G)^{1 / 2}=-\frac{1}{U V}\left[\left(U \frac{\partial}{\partial u}\right)^{2} \log \frac{\tau}{1-\tau}+\left(V \frac{\partial}{\partial v}\right)^{2} \log \frac{\tau}{1+\tau}\right] \tag{40}
\end{equation*}
$$

It is important to distinguish the case $k=0$ from $k \neq 0$. The latter case is of more interest; we find by means of (40) an additional relation between E and G, namely,

$$
\begin{equation*}
(E G)^{1 / 2}=-(1 / 2 k U V)\left[\left(U \frac{\partial}{\partial u}\right)^{2} \log \frac{\tau}{1-\tau}+\left(V \frac{\partial}{\partial v}\right)^{2} \log \frac{\tau}{1+\tau}\right] \tag{41}
\end{equation*}
$$

Therefore the linear elements of S and S_{1} are, from (35), (36) and (41), given by

$$
\left\{\begin{align*}
d s^{2}= & -\frac{1}{2 k}\left[\left(U \frac{\partial}{\partial u}\right)^{2} \log \frac{\tau}{1-\tau}+\left(V \frac{\partial}{\partial v}\right)^{2} \log \frac{\tau}{1+\tau}\right] \tag{42}\\
& \cdot\left[\frac{1-\tau}{1+\tau} U^{-2} d u^{2}+\frac{1+\tau}{1-\tau} V^{-2} d v^{2}\right] \\
d s_{1}^{2}= & \frac{2 \tau}{1+\tau} U^{-2} d u^{2}+\frac{2 \tau}{1-\tau} V^{-2} d v^{2}
\end{align*}\right.
$$

where τ denotes an arbitrary function of u, v.
If the parameters u, v are subjected to a suitable transformation
of type (31), then the pair of surfaces S and S_{1} is characterized by the linear elements of a special form:

$$
\left\{\begin{array}{l}
d s^{2}=-\frac{1}{2 k}\left\{\frac{\partial^{2}}{\partial u^{2}} \log \frac{\tau}{1-\tau}+\frac{\partial^{2}}{\partial v^{2}} \log \frac{\tau}{1+\tau}\right\}\left\{\frac{1-\tau}{1+\tau} d u^{2}+\frac{1+\tau}{1-\tau} d v^{2}\right\} \tag{43}\\
d s_{1}^{2}=\frac{2 \tau}{1+\tau} d u^{2}+\frac{2 \tau}{1-\tau} d v^{2}
\end{array}\right.
$$

involving an arbitrary function τ of u and v.
If $k=0$, then (39) becomes, by applying a transformation of type (31),

$$
\begin{equation*}
\frac{\partial^{2}}{\partial v^{2}} \log E_{1}+\frac{\partial^{2}}{\partial u^{2}} \log G_{1}=0 \tag{44}
\end{equation*}
$$

Therefore we obtain

$$
\left\{\begin{array}{l}
d s_{1}^{2}=\left(E^{-1 / 2}-G^{-1 / 2}\right)\left(E^{1 / 2} d u^{2}+G^{1 / 2} d v^{2}\right) \tag{45}\\
d s^{2}=E d u^{2}+G d v^{2}
\end{array}\right.
$$

where the quantities E and G are related by

$$
\begin{equation*}
\frac{\partial^{2}}{\partial v^{2}} \log \left(1-(E / G)^{1 / 2}\right)+\frac{\partial^{2}}{\partial u^{2}} \log \left((G / E)^{1 / 2}-1\right)=0 \tag{46}
\end{equation*}
$$

Thus the problem of determining the form of linear elements of a pair of surfaces S and S_{1} with the stated properties is completely solved.

It should be observed that the analogous problem for higher dimensional spaces may be of some interest. We hope to consider it in a future paper.

Meitan, Kweichow, China

[^0]: Received by the editors February 1, 1943.
 ${ }^{1}$ J. Douglas, A new special form of the linear element of a surface, Trans. Amer. Math. Soc. vol. 48 (1940) pp. 101-116.
 ${ }^{2}$ Douglas, loc. cit., p. 108.

[^1]: ${ }^{3}$ Cf. G. Darboux, Lȩ̧ons sur la théorie génêrale des surfaces, vol. 3, 1894, p. 47.
 ${ }^{4}$ Cf. W. Blaschke, Vorlesungen über Differentialgeometrie, 3d edition, 1930, p. 175. Write $F=0, u^{\prime}=1, u^{\prime \prime}=0$.
 ${ }^{5}$ Darboux, loc. cit., p. 49.

[^2]: ${ }^{6}$ Blaschke, loc. cit., p. 117.

[^3]: ${ }^{7}$ E. Kasner, A characteristic property of isothermal systems of curves, Math. Ann. vol. 59 (1904) pp. 352-354.
 ${ }^{8} \mathrm{~J}$. Douglas, A criterion for the conformal equivalence of a Riemann space to a Euclidean space, Trans. Amer. Math. Soc. vol. 27 (1925) pp. 299-306.

