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In a recent paper J. D. Hill1 has discussed the mean-value of the 
subseries of any absolutely convergent series 5 = ^ w w . Simplifying his 
method by use of the Rademacher functions, we obtain a mapping 
of the subseries into the interval O ^ x ^ l by defining2 

* 1 + Rn(%) 
(1) 4>(X) = 2J «n-

Hill's result states that if X)|w»l converges, then the mean-value is 
given by 

(2) f <l>(x)dx = s/2. 
Jo 

In the theorem below we point out the weakest condition on the 
series ^un for which this result persists. 

LEMMA. If (1) converges on a set of positive measure it converges al­
most everywhere. 

Let D be the set of points on which (1) converges. Let x = a\a^a% • • • 
(in binary notation) be a point of D. If a finite number of the a» are 
changed then the new point still belongs to D, for by the definition 
of the Rademacher functions this operation changes only a finite 
number of the terms of the series (1). Then D is a "homogeneous" 
set not of measure 0; hence it must be of measure l.3 

THEOREM. A necessary and sufficient condition that the series (1) con­
verge on a set of positive measure is that the two series ^un and ^u2

n 

converge. Then (1) converges almost everywhere and (2) is valid. 

(i) Suppose that (1) converges on a set of positive measure. Then 
it must, by the lemma, converge almost everywhere. Then there exist 

Presented to the Society, April 3, 1943; received by the editors February 15, 1943. 
I am indebted to Dr. R. Salem for helpful suggestions. 

1 Bull. Amer. Math. Soc. vol. 48 (1942) p. 103. 
2 The mapping is not 1-1 at the points x = k/2n, but this does not affect the results. 

For the properties of the Rademacher functions used in this paper see Kacmarcz 
and Steinhaus, Le système orthogonale de M. Rademacher, Studia Mathematica vol. 2 
(1939) p. 231. 

3 C. Visser, The law of nought-or-one in the theory of probability, Studia Mathe­
matica vol. 7 (1938) pp. 146-147. 
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two points xo and 1— x0y symmetric in # = 1/2, at which (1) con­
verges. Inasmuch as Rn(xo)+Rn(l— x0) = 0 we have from (1) that 
<f>(xo) + 0 ( 1 —Xo) =un/2, so tha tX^w converges. Hence^u n R n {x) con­
verges a.e., so that XX» converges.4 

(ii) Suppose now that s=^2un and ^ul converge. Then the series 
of (1) converges a.e. to a function 0(#). The Rn(x) are orthonormal, 
so that by the Riesz-Fischer theorem the series ^unRn(x)/2 con­
verges in the mean to a function of L2; this function must coincide a.e. 
with <p(x)—s/2. 

To establish (2) note that by the Schwarz inequality 

ƒ» X 1 N I 

<t>(x) - s/2 - Z (un/2)Rn(x) dx 
0 I 1 I a l l N |2 \ l / 2 

4>(x) - */2 - Z (un/2)Rn(x) dx) 
= o(l) (iV-»oo). 

Since flRn(x)dx = 0y (2) is an immediate consequence. 
We conclude with some remarks. 
(i) Hill points out that if in our theorem we take ^jun to be condi­

tionally convergent then D is of the first category1 though of meas­
ure l.5 

(ii) Ulam notes that if X) I Mn | converges then the set of values 
taken on by (j>{x) is a perfect set and asks what perfect sets can be 
obtained this way.5 

(iii) We can obtain part of the above theorem from the laws of 0 
or 1 of probability.6 For (1) may be regarded as a series of independ­
ent random variables of mean-value and standard deviation un/2. 

(iv) The above method furnishes a simple proof of a theorem of 
Steinhaus: the series (1) is (C, 1) summable a.e. if and only if ^jun 

is (C, 1) summable and y^ul. converges.7 
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4 Kacmarcz and Steinhaus, op. cit. p. 234. 
5 Written communication to the author. 
6 See, for example, Khintchine and Kolmogoroff, Über Konvergenz von Reihen, 

deren Glieder durch den Zufall bestimmt werden, Ree. Math. (Mat. Sbornik) N. S. vol. 
32 (1925) p. 668. 

7 Incorporated into a paper of Paley and Zygmund, On some series of functions (2), 
Proc. Cambridge Philos. Soc. vol. 26 (1930) p. 473. 


