UNIFORM CONVEXITY. III

MAHLON M. DAY

It is the purpose of this note to fill out certain results given in two recent papers on uniform convexity of normed vector spaces.¹ A normed vector space² B is called *uniformly convex* with modulus of convexity δ if for each $\epsilon > 0$ there exists a $\delta(\epsilon) > 0$ such that for every two points b and b' of B satisfying the conditions ||b|| = ||b'|| = 1 and $||b-b'|| \ge \epsilon$ the quantity $||b+b'|| \le 2(1-\delta(\epsilon))$. If $||b_0|| = 1$, B is said to be locally uniformly convex near b_0 if there is a sphere about b_0 in which the condition for uniform convexity holds. Theorem 1 shows that all properties of normed vector spaces which are invariant under isomorphism are the same for uniformly convex and locally uniformly convex spaces. Theorem 2 gives a necessary condition for isomorphism with a uniformly convex space. The condition is in terms of isomorphisms of finite dimensional subspaces and is suggested by examples given in [I]; it is not known whether the condition is sufficient. Theorem 3 is somewhat more general than Theorem 3 of [II]; it uses uniformly convex function spaces instead of the l_p spaces of [II].

A cone C in B is a set which contains all of every half line from the origin through each point of C.

LEMMA 1. A normed vector space B is locally uniformly convex near b_0 if and only if there exists a convex cone C, with b_0 in its interior, such that for every ϵ there is a $\delta_1(\epsilon) > 0$ such that the conditions $||b|| \leq 1$, $||b'|| \leq 1$, and $||b-b'|| \geq \epsilon$ imply $||b+b'|| \leq 2(1-\delta_1(\epsilon))$ for every pair of points b and b' in C.

If this condition is satisfied there is obviously a sphere about b_0 inside *C*, so that in that sphere $\delta(\epsilon)$ can be taken equal to $\delta_1(\epsilon)$. On the other hand, if there is a sphere of radius 2k about b_0 in which δ can be defined, it can be shown that it suffices to let *C* be the cone through points of the sphere of radius *k* about b_0 and to let $\delta_1(\epsilon) = \inf [\epsilon/10, \delta(4\epsilon/5)/2]$.

LEMMA 2. If the cone C of Lemma 1 contains a sphere about b_0 of radius k, if $||b|| \leq 1$ and if $||b-b_0|| \geq k$, then $||b+b_0|| < 2-\delta_1(k)$.

Presented to the Society, April 24, 1943; received by the editors January 25, 1943.

¹ These papers are [I] Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 313–317, and [II] Some more uniformly convex spaces, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 504–507.

² See Banach, Théorie des opérations linéaires, Warsaw, 1932, for general definitions.

This is obvious if $||b-b_0|| = k$. If $||b|| \le 1$ and $||b-b_0|| > k$ there exists a point $b_1 = \lambda b + (1-\lambda)b_0$, $0 < \lambda < 1$, on the line segment from b_0 to bsuch that $||b_0-b_1|| = k$ while $||b_1|| \le 1$; hence $||b_1+b_0|| \le 2(1-\delta_1(k))$. Let f be a linear functional such that $f(b') \le ||b'||$ for all b' in B and such that the line $\{b'|f(b')=1\}$ in the plane of 0, b_0 and b touches the unit sphere in B at the point of intersection of that sphere with the half line from 0 through $b+b_0$, so that $f(b+b_0) = ||b+b_0||$. Then $f(b_0+b_1) \le ||b_0+b_1|| \le 2(1-\delta_1(k))$. Two cases can now be distinguished: If $f(b_0) \ge f(b)$, $2-2\delta_1(k) \ge f(b_1+b_0) \ge f(b+b_0) = ||b+b_0||$. If $f(b_0) < f(b)$, $2(1-\delta_1(k)) \ge f(b_1+b_0) = f(b_1) + f(b_0) > 2f(b_0)$, so $||b+b_0|| = f(b+b_0) = f(b_0) + f(b) < 1-\delta_1(k) + 1$.

THEOREM 1. If B is locally uniformly convex near some point b_0 , then B is isomorphic to a uniformly convex space. If k is the radius of the sphere which exists by Lemma 1 about b_0 , a suitable modulus of convexity for the new space is given in terms of the old by $\delta'_1(\epsilon) = 1$ $-1/[1+\delta_1(\delta_1(k)\epsilon/4)/(k+\delta_1(k)/4)].$

Suppose the cone C of Lemma 1 contains a sphere $\{b | ||b-b_0|| \leq k\}$ about b_0 ; let $\alpha = 1 - \delta_1(k)/4$ and consider the two spheres $E_1 = \{b | ||b-\alpha b_0|| \leq 1\}$ and $E_2 = \{b | ||b+\alpha b_0|| \leq 1\}$. If S is the intersection of E_1 and E_2 , it is clear that S is convex and symmetric about the origin, and that S contains the sphere $\{b | ||b|| \leq \delta_1(k)/4\}$.

To show $||b|| \leq k + \delta_1(k)/4$ for each b in S, it suffices to show that $b \in S$ implies that $b + \alpha b_0$ is within k of b_0 . If this is false, that is, if $||b + \alpha b_0 - b_0|| > k$, then, by Lemma 2, $||b + \alpha b_0 + b_0|| < 2 - \delta_1(k)$. However $||b + \alpha b_0 + b_0|| = ||b - \alpha b_0 + (1 + 2\alpha)b_0|| \geq (1 + 2\alpha)||b_0|| - ||b - \alpha b_0|| \geq 1 + 2\alpha - 1 = 2\alpha = 2 - \delta_1(k)/2 > 2 - \delta_1(k)$.

Let |b| be the smallest non-negative value of t for which the point b/t is in S. Then $|\cdot\cdot\cdot|$ defines a new norm in B and it is clear from the inequalities thus far derived that $[\delta_1(k)/4]|b| \leq ||b|| \leq ||b|| \leq ||b|| \leq ||b|| \leq ||b|| \leq ||b|| \leq ||b||$, so this new norm defines a space isomorphic to the original and all that need be proved is that $|\cdot\cdot\cdot|$ is uniformly convex. If $b_1, b_2 \in S$, and $|b_1-b_2| > \epsilon$, then $||(b_1+\alpha b_0)-(b_2+\alpha b_0)|| = ||b_1-b_2|| \geq \delta_1(k)\epsilon/4$. Also $||b_1+\alpha b_0-b_0|| \leq k$ by the preceding paragraph so, by the original hypotheses near b_0 , $||b_1+b_2+2\alpha b_0|| \leq 1-\mu(\epsilon)$. The same argument with $-\alpha b_0$ and $-b_0$ shows that $(b_1+b_2)/2 \in E_2' = \{b|||b-\alpha b_0|| \leq 1-\mu(\epsilon)\}$.

It will now suffice to show that there is a $\delta'_1(\epsilon) > 0$ such that $|b| < 1 - \delta'_1(\epsilon)$ if $b \in E'_1 \cdot E'_2$. $E'_i \subset E_i$, i = 1, 2, so for any b in $E'_1 \cdot E'_2$ there is a number $t \ge 1$ such that |tb| = 1; hence, either $||tb + \alpha b_0|| = 1$ or $||tb - \alpha b_0|| = 1$. These cases are interchanged by replacing b by

746

UNIFORM CONVEXITY

-b so it suffices to consider the first; then $1-\mu(\epsilon) \ge ||\alpha b_0 - b||$ = $||\alpha b_0 - tb + tb - b|| \ge ||\alpha b_0 - tb|| - ||tb - b|| = 1 - (t-1)||b||$. Therefore $(t-1)||b|| \ge \mu(\epsilon)$ or $t \ge 1 + \mu(\epsilon)/||b|| \ge 1 + \delta_1(\delta_1(k)\epsilon/4)/[k+\delta_1(k)/4]$. Letting $1 - \delta_1'(\epsilon)$ be the reciprocal of the last term in the preceding inequality gives $|b| = 1/t \le 1 - \delta_1'(\epsilon)$ if $b \in E_1' \cdot E_2'$.

We turn now to a necessary condition for isomorphism of B with a uniformly convex space. The effect of uniform convexity on the finite dimensional subspaces of an isomorphic space was used implicitly in [I]; it is given explicit formulation here. Let B_0 and B be two normed vector spaces; then there exist linear operations of norm ≤ 1 defined on B_0 with values in B. For each such operator U there is a largest number k_U , $0 \leq k_U \leq 1$, such that $||b_0|| \geq ||U(b_0)||$ $\geq k_U \|b_0\|$ for each b_0 in B_0 , and this number k_U can be taken as a measure of the distortion of B_0 under the mapping U into B. Define $k(B_0, B)$ to be the least upper bound of k_U as U runs over the linear operators from B_0 to B of norm not greater than 1; explicitly, $k(B_0, B) = \sup_{||U|| \le 1} \inf_{||b_0||=1} ||U(b_0)||$. $k(B_0, B)$ is then a measure of how nearly B_0 approaches isometry with a subspace of B; if $k(B_0, B) = 1$, there are operations which come arbitrarily near preserving distances; $k(B_0, B) > 0$ if and only if B_0 is isomorphic to a subspace of B. For the present it suffices to choose certain finite dimensional spaces for B_0 . Let M_n and L_n be the *n*-dimensional spaces of sequences $t = (t_1, \dots, t_n)$ of *n* real numbers, where $\| t \|_{M_n} = \| (t_1, \cdots, t_n) \|_{M_n} = \max_{1 \le i \le n} | t_i | \text{ and } \| t \|_{L_n} = \| (t_1, \cdots, t_n) \|_{L_n}$ $=\sum_{1\leq i\leq n} |t_i|$. Then $k(M_n, B) = k(L_n, B) = 0$ if and only if the dimension of B is less than n; also $k(M_n, B)$ and $k(L_n, B)$ are nonincreasing functions of n for each B.

LEMMA 3. If U is a one-to-one linear operator from B_1 onto B_2 such that for some $a \ge 0$, $||b_1|| \ge ||Ub_1|| \ge a||b_1||$ for each b_1 in B_1 , then for any normed vector space T, $k(T, B_1) \ge ak(T, B_2) \ge a^2k(T, B_1)$.

If a = 0, this is obvious. If a > 0 and F is any linear operator from T into B, with $||F|| \leq 1$, let UF be defined by UF(t) = U(F(t)) for every t in T. Then $||UF|| \leq 1$ and $||UF(t)|| \geq a ||F(t)||$ for every t. Hence $\inf_{1||t||=1} ||UF(t)|| \geq a \inf_{1||t||=1} ||F(t)||$ so $k(T, B_2) \geq ak(T, B_1)$. If F' is any linear operator of norm ≤ 1 from T into B_2 , the same argument, using the operator $a U^{-1}F'$, shows that $k(T, B_1) \geq ak(T, B_2)$.

Note that if U maps B_1 on only part of B_2 or is not 1-1 but is of norm ≤ 1 , the first half of the proof still holds (although a=0 in the second case); it follows that if B_1 is a subspace of B_2 , then $k(T, B_1) \leq k(T, B_2)$.

Sobczyk³ has defined a special embedding of l_1 into m which can easily be modified to define an isometry of L_{n+1} and a subspace of M_{2^n} so $k(L_{n+1}, B) \ge k(M_{2^n}, B)$ for every integer n. In particular, L_2 and M_2 are isometric so $k(L_2, B) = k(M_2, B)$.

LEMMA 4. If δ_1 satisfies Lemma 1 in the whole unit sphere of B and is continuous on the left, then

(1) $k(M_n, B) \leq [1 - \delta_1(2k(M_n, B))]^{n-1},$

(2) $k(L_{2^n}, B) \leq [1 - \delta_1(2k(L_{2^n}, B))]^n$.

If F is an operation from M_n into B such that $||t|| \ge ||F(t)|| \ge k||t||$ for all t, where k > 0, let $\epsilon_i = \pm 1$ for $i = 1, \dots, n$; then the points $F(\epsilon_1, \dots, \epsilon_n)$ lie in the unit sphere of B since $||F(\epsilon_1, \dots, \epsilon_n)||$ $\le ||\epsilon_1, \dots, \epsilon_n|| = 1$. If $\epsilon_1, \dots, \epsilon_n$ and $\epsilon'_1, \dots, \epsilon'_n$ are different, $||F(\epsilon_1, \dots, \epsilon_n) - F(\epsilon'_1, \dots, \epsilon'_n)|| \ge k||(\epsilon_1, \dots, \epsilon_n) - (\epsilon'_1, \dots, \epsilon_n)||$ = 2k; hence $||F(\epsilon_1, \dots, \epsilon_{n-1}, 0)|| = ||F(\epsilon_1, \dots, \epsilon_{n-1}, 1) - F(\epsilon_1, \dots, \epsilon_{n-1}, -1)||/2 \le 1 - \delta_1(2k)$; that is, $||F(\epsilon_1, \dots, \epsilon_{n-1}, 0)/[1 - \delta_1(2k)]||$ ≤ 1 for all $\epsilon_1, \dots, \epsilon_{n-1}$. These points are at least 2k apart for different ϵ_i , so this process can be applied n-1 times to show that $||F(1, 0, 0, \dots, 0)/[1 - \delta_1(2k)]^{n-1}|| \le 1$. Hence $k = k||1, 0, 0, \dots, 0||$ $\le ||F(1, 0, 0, \dots, 0)|| \le [1 - \delta_1(2k)]^{n-1}$. Taking $k = k(M_n, B)$ or, if that is impossible, taking the limit as k increases toward $k(M_n, B)$ gives (1).

If F maps L_{2^n} into B so that $||t|| \ge ||F(t)|| \ge k||t||$, k > 0, for all t, the same sort of argument can be carried through using the points of L_{2^n} which have one coordinate equal to one, the others all zero. It leads to the inequality $k = k ||(2^{-n}, \cdots, 2^{-n})|| \le ||F(2^{-n}, \cdots, 2^{-n})|| \le ||F(2^{-n}, \cdots, 2^{-n})|| \le ||1 - \delta_1(2k)|^n$ which gives (2).

THEOREM 2. If B is isomorphic to a space which is locally uniformly convex near any point, then $\lim_{n \to \infty} k(M_n, B) = \lim_{n \to \infty} k(L_n, B) = 0$.

By Theorem 1, *B* is isomorphic to a uniformly convex space *B'*. By Lemma 4, $k(L_{2^n}, B') < [1 - \delta_1(2k(L_{2^n}, B'))]^n$ for all *n*. If $k(L_{2^n}, B') > k > 0$ for all *n*, then $0 < k \leq k(L_{2^n}, B') \leq (1 - \delta_1(2k))^n \rightarrow 0$ as $n \rightarrow \infty$; this contradiction and the monotony of $k(L_n, B')$ show that $k(L_n, B') \rightarrow 0$. Lemma 3 shows that $k(L_n, B) \rightarrow 0$ also. A similar proof holds for $k(M_n, B)$; this can also be proved by using the remark before Lemma 4 and the fact that $k(L_n, B) \rightarrow 0$.

This theorem has as a corollary the result of [I]: If $B = \mathcal{P}^p(B_i)$, where $B_i = l^{p_i}$ or L^{p_i} , and if the numbers p_i are not bounded away from

⁸ A. Sobczyk, Projection of the space m on its subspace c_0 , Bull. Amer. Math. Soc. vol. 47 (1941) pp. 938–947; the construction is given in the proof of Theorem 3.

1 and ∞ , then B is not isomorphic to a uniformly convex space.

It is not difficult to give a direct proof of Theorem 2 not using Theorem 1. I have also shown that if B^* is uniformly convex, then $k(L_n, B) \rightarrow 0$ (as does $k(M_n, B)$); whether this condition is sufficient as well as necessary for isomorphism of B or B^* with a uniformly convex space is a question which I am, so far, unable to answer.

Some remarks may be made about the minimum values, $k(L_n)$ and $k(M_n)$, of $k(L_n, B)$ and $k(M_n, B)$ taken for n fixed and B varying over the spaces of dimension at least n. $k(M_n, l^p) = n^{-1/p}$ if $2 \le p < \infty$ and $k(L_n, l^p) = n^{-1/p'}$ if $1 \le p \le 2$ where 1/p' + 1/p = 1. Hence $k(L_n) \le k(L_n, l^2) = n^{-1/2}$ and $k(M_n) \le k(M_n, l^2) = n^{-1/2}$ for all n. The plane with a regular hexagon for unit sphere is an example showing that $k(L_2) = k(M_2) \le 2/3$ ($<2^{-1/2}$). A tedious computation has shown that 2/3 is precise; that is, that $k(L_2) = k(M_2) = 2/3$. So far all my attempts to show $k(L_n)$ and $k(M_n) \ge 1/n$ have failed for n > 2.

The rest of this paper is devoted to extending the results of [II]. A normed vector space T of real-valued functions $t = \{t_s\}$ on some set of indices S will be called a *proper function space* if for every function $t = \{t_s\}$ in T with $0 \le t_s$ for all s (a) for every real-valued function $\{t'_s\}$ with $0 \le t'_s \le t_s$ for all s, the function $\{t'_s\} \in T$ and (b) $0 \le ||\{t'_s\}|| \le ||\{t_s\}||$. If T is a proper function space and $B_s, s \in S$, are normed vector spaces, let $\mathcal{P}_T\{B_s\}$ be the space of functions $b = \{b_s\}$ where $b_s \in B_s$ and the function $\{||b_s||\} \in T$; in $\mathcal{P}_T\{B_s\}$, $||b|| = ||\{b_s\}|| = ||\{||b_s||\}||$. (In [II] S was countable and only the special product spaces $\mathcal{P}^p\{B_s\} = \mathcal{P}_{l^p}\{B_s\}$ were used.)

THEOREM 3. If T is a proper function space, then $P_T \{B_s\}$ is uniformly convex if and only if T is uniformly convex and the spaces B_s have a common modulus of convexity.

As the proof follows the lines of the proof of Theorem 3 of [II] except at one point it suffices to give the first half of the sufficiency proof; that is, the special case in which ||b|| = ||b'|| = 1, $||b-b'|| \ge \epsilon$ and $||b_s|| = ||b'_s||$ for every s. Let $\beta_s = ||b_s||$ and $\gamma_s = ||b_s - b'_s||$; then for each s, $||b_s + b'_s|| \le 2(1 - \delta(\gamma_s/\beta_s))\beta_s$ where δ is a common modulus of convexity for all B_s . Hence

(1)
$$\|b + b'\| = \|\{\|b_s + b'_s\|\}\|_T \leq 2\|\{1 - \delta(\gamma_s/\beta_s)\beta_s\}\|_T.$$

Clearly $\gamma_s \leq 2\beta_s$ for all s; let E be the set of all s for which $\gamma_s/\beta_s > \epsilon/4$; then in F, the complement of E, $\beta_s \geq 4\gamma_s/\epsilon$. If $\{t_s\}$ is any element of T, let $t_{sE} = t_s$ if $s \in E$, $t_{sE} = 0$ if $s \in E$; then

$$1 \ge \left\| \left\{ \beta_s \right\} \right\|_T \ge \left\| \left\{ \beta_{sF} \right\} \right\| \ge \left\| \left\{ 4\gamma_{sF}/\epsilon \right\} \right\| = (4/\epsilon) \left\| \left\{ \gamma_{sF} \right\} \right\|.$$

Hence $\|\{\gamma_{sF}\}\| \leq \epsilon/4$ and

 $\|\{\gamma_{\mathfrak{s}E}\}\| = \|\{\gamma_{\mathfrak{s}}\} - \{\gamma_{\mathfrak{s}F}\}\| \ge \|\{\gamma_{\mathfrak{s}}\}\| - \|\{\gamma_{\mathfrak{s}F}\}\| \ge 3\epsilon/4.$ Hence $\|\{\beta_{\mathfrak{s}E}\}\| \ge \|\{\gamma_{\mathfrak{s}E}\}\|/2 \ge 3\epsilon/8.$

Now let $t = \{\beta_{\delta F}\}$, $t' = \{\beta_{\delta E}\}$ and $t'' = (1 - 2\delta(\epsilon/4))t'$; then $||t+t''|| \le ||t+t'|| = 1$ and $||t+t'-(t+t'')|| = ||t'-t''|| = 2\delta(\epsilon/4)||t'|| \ge 3\delta(\epsilon/4)\epsilon/4$. Call this last quantity $\alpha(\epsilon)$; then

(2)
$$\|(1 - \delta(\epsilon/4))t' + t\| = (1/2)\|t + t' + t + t''\| \le 1 - \delta_1(\alpha(\epsilon))$$

where δ_1 is the function which exists in *T* by Lemma 1. By (1) and (2)

$$\begin{split} \left\| \boldsymbol{b} + \boldsymbol{b}' \right\| &\leq \left\| \left\{ (1 - \delta(\gamma_s/\beta_s))\beta_{sE} \right\} + \left\{ \beta_{sF} \right\} \right\| \leq \left\| (1 - \delta(\epsilon/4))t' + t \right\| \\ &\leq 1 - \delta_1(\alpha(\epsilon)) \equiv 1 - \delta_2(\epsilon). \end{split}$$

The remainder of the proof is exactly that given in [II] (beginning with line 4 on p. 506); it shows that a suitable value of δ_3 in $\mathcal{P}_T \{B_s\}$ is given if $\delta_3(\epsilon) = \delta_1(\eta)$ where η is so chosen that $\eta/2 + \delta_1(\eta) < \delta_2(\epsilon)$. Since δ_3 depends only on the moduli of convexity in T and all B_s , we have the following result, more general than Corollary 1 of [II].

COROLLARY. If $\{T\}$ is a collection of proper function spaces, if $\{B\}$ is a collection of normed vector spaces, and if all these spaces have a common modulus of convexity, then all the spaces $\mathcal{P}_T\{B_s\}$ with T in $\{T\}$ and all B_s in $\{B\}$ have a common modulus of convexity.

Some extensions of Theorem 3 may be made; for instance, it is clear that the condition (a) on a proper function space is imposed to make sure that such functions as $\{||b_s+b'_s||\}$ are in T. For example, if S is a space in which a measure is defined and all B_s are the same space B_0 , it suffices to take $T=L_S^p$, 1 and to consider only $Bochner measurable functions⁴ <math>\{b_s\}$ for which $\{||b_s||\} \in T$. In this case all the functions constructed are again in T so the proof can be carried through showing directly that $L^p(B_0)$ is uniformly convex if $1 and <math>B_0$ is uniformly convex. In fact, if the norm in T satisfies (b) and if it is assumed only that every measurable real-valued function dominated by a function in T is again in T, the proof can be carried through for the space of Bochner measurable functions from S into B for which $\{||b_s||\} \in T$.

UNIVERSITY OF ILLINOIS

750

⁴ S. Bochner, Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind, Fund. Math. vol. 20 (1933) pp. 262-276.