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remarked that Theorem A may well carry, in such a study, a weight
greater than that indicated by its relatively minor role in the proof
of Theorem B.
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Consider a set 4 of points in euclidean n-space E,. For each count-
able covering {A.-} of A by arbitrary sets consider the sum

o= Z CmB(Ai) m’

where m is a fixed positive number, ¢,=n"'2/2"T[(m+2)/2], and
6(4) is the diameter of 4. The constant cn is, for integral m, the m-
volume of a sphere of unit diameter in E,,. Let L..(4; a) be the great-
est lower bound of all sums ¢ corresponding to coverings for which
0(4;) <a for all 2 (a>0). We define the m-measure of 4 as L.(4)
=lim,.oLn(4 ;c). We denote the outer Lebesgue measure of 4 by | 4.

We shall show that n-measure and outer Lebesgue measure are equal:
L.(4)=|A4|. A statement on this matter by W. Hurewicz and
H. Wallman is true but misleading: these authors assert that L,(4)/c.
and | 4| may be unequal.!

F. Hausdorff has introduced an m-measure L5(4) defined as is
L.(A4) except that coverings by spheres are used instead of coverings
by arbitrary sets. He has shown? that L5(4) = IA l . However L.(4)
and L‘,’;,(A) are unequal in general, as A. S. Besicovitch has shown?
for m=1, n=2. S. Saks* and others define m-measure as Ln(4)/cn.

Our proof, which is an obvious extension of Hausdorff’s proof, de-
pends on two known theorems.

THEOREM 1. Of all sets in E, having a given diameter, the n-sphere
has the greatest outer Lebesgue measure.’
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THEOREM I1. Suppose that to each point x of a set A in E, there
corresponds a set of closed n-spheres centered at x of arbitrarily small
positive diameter. Then for any given €>0, a countable number of the
spheres cover A and are such that the sum of their Lebesgue measures is
at most IAI +e.8

We now prove that

| 4] S L.4) S Li4) =] 4.
For any countable covering { A;} of 4,

(4] = Zla] = X aadir

by Theorem I. Hence ]A] <L,(4;a) for all @ and IAI <L.(4).

The definitions imply that L.(4) SL3(4).

Finally, given € >0 and a>0, assign to each point x of 4 the set of
all closed spheres centered at x and of positive diameter less than o.
Then by Theorem II a countable number of these spheres {.S;} cover
A and are such that

Zis,-l == Z‘,cna(si)n§|,4|+e.

Hence L3(4; @) <| 4| and L3(4) =] 4].
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