remarked that Theorem A may well carry, in such a study, a weight greater than that indicated by its relatively minor role in the proof of Theorem B.

University of Missouri

THE EQUIVALENCE OF n-MEASURE AND LEBESGUE MEASURE IN E_{n}

ARTHUR SARD

Consider a set A of points in euclidean n-space E_{n}. For each countable covering $\left\{A_{i}\right\}$ of A by arbitrary sets consider the sum

$$
\sigma=\sum_{i} c_{m} \delta\left(A_{i}\right)^{m}
$$

where m is a fixed positive number, $c_{m}=\pi^{m / 2} / 2^{m} \Gamma[(m+2) / 2]$, and $\delta(A)$ is the diameter of A. The constant c_{m} is, for integral m, the m volume of a sphere of unit diameter in E_{m}. Let $L_{m}(A ; \alpha)$ be the greatest lower bound of all sums σ corresponding to coverings for which $\delta\left(A_{i}\right)<\alpha$ for all $i(\alpha>0)$. We define the m-measure of A as $L_{m}(A)$ $=\lim _{\alpha \rightarrow 0} L_{m}(A ; \alpha)$. We denote the outer Lebesgue measure of A by $|A|$.

We shall show that n-measure and outer Lebesgue measure are equal: $L_{n}(A)=|A|$. A statement on this matter by W. Hurewicz and H. Wallman is true but misleading: these authors assert that $L_{n}(A) / c_{n}$ and $|A|$ may be unequal. ${ }^{1}$
F. Hausdorff has introduced an m-measure $L_{m}^{S}(A)$ defined as is $L_{m}(A)$ except that coverings by spheres are used instead of coverings by arbitrary sets. He has shown ${ }^{2}$ that $L_{n}^{S}(A)=|A|$. However $L_{m}(A)$ and $L_{m}^{S}(A)$ are unequal in general, as A. S. Besicovitch has shown ${ }^{3}$ for $m=1, n=2$. S. Saks ${ }^{4}$ and others define m-measure as $L_{m}(A) / c_{m}$.

Our proof, which is an obvious extension of Hausdorff's proof, depends on two known theorems.

Theorem I. Of all sets in E_{n} having a given diameter, the n-sphere has the greatest outer Lebesgue measure. ${ }^{5}$

[^0]Theorem II. Suppose that to each point x of a set A in E_{n} there corresponds a set of closed n-spheres centered at x of arbitrarily small positive diameter. Then for any given $\epsilon>0$, a countable number of the spheres cover A and are such that the sum of their Lebesgue measures is at most $|A|+\epsilon{ }^{6}$

We now prove that

$$
|A| \leqq L_{n}(A) \leqq L_{n}^{S}(A) \leqq|A| .
$$

For any countable covering $\left\{A_{i}\right\}$ of A,

$$
|A| \leqq \sum_{i}\left|A_{i}\right| \leqq \sum_{i} c_{n} \delta\left(A_{i}\right)^{n}
$$

by Theorem I. Hence $|A| \leqq L_{n}(A ; \alpha)$ for all α and $|A| \leqq L_{n}(A)$.
The definitions imply that $L_{n}(A) \leqq L_{n}^{S}(A)$.
Finally, given $\epsilon>0$ and $\alpha>0$, assign to each point x of A the set of all closed spheres centered at x and of positive diameter less than α. Then by Theorem II a countable number of these spheres $\left\{S_{i}\right\}$ cover A and are such that

$$
\sum_{i}\left|S_{i}\right|=\sum_{i} c_{n} \delta\left(S_{i}\right)^{n} \leqq|A|+\epsilon
$$

Hence $L_{n}^{S}(A ; \alpha) \leqq|A|$ and $L_{n}^{S}(A) \leqq|A|$.
Queens College

[^1]
[^0]: Received by the editors September 23, 1942, and, in revised form, April 2, 1943.
 ${ }^{1}$ W. Hurewicz and H. Wallman, Dimension theory, Princeton, 1941, p. 104.
 ${ }^{2}$ F. Hausdorff, Dimension und äusseres Mass, Math. Ann. vol. 79 (1919) p. 163.
 ${ }^{3}$ A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points, Math. Ann. vol. 98 (1928) pp. 458-464. R. L. Jeffery, Sets of k-extent in n-dimensional space, Trans. Amer. Math. Soc. vol. 35 (1933) p. 634.
 ${ }^{4}$ S. Saks, Theory of the integral, Warsaw, 1937, pp. 53-54.

[^1]: ${ }^{5}$ W. H. and G. C. Young, The theory of sets of points, Cambridge, 1906, pp. 293294. L. Bieberbach, Über eine Extremaleigenschaft des Kreises, Jber. Deutschen Math. Verein. vol. 24 (1915) pp. 247-250. T. Kubota, Über die konvex-geschlossenen Mannigfaltigkeiten im n-dimensionalen Räume, Science Reports, Tôhoku Imperial University, vol. 14 (1925) p. 98. T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Ergebnisse der Mathematik vol. 3 (1934) pp. 76 and 107. W. Feller, Some geometric inequalities, Duke Math. J. vol. 9 (1942) pp. 889-892. The diameter of an arbitrary set B equals the diameter of the smallest closed convex set containing B.
 ${ }^{6}$ H. Rademacher, Eineindeutige Abbildung und Messbarkeit, Monatshefte für Mathematik und Physik vol. 27 (1916) p. 190. The case $|A|=\infty$ is not excluded.

