ON THE EXTENSION OF DIFFERENTIABLE FUNCTIONS

HASSLER WHITNEY

The author has shown previously how to extend the definition of a function of class C^{m} defined in a closed set A so it will be of class C^{m} throughout space (see [1]). ${ }^{1}$ Here we shall prove a uniformity property: If the function and its derivatives are sufficiently small in A, then they may be made small throughout space. Besides being bounded, we assume that A has the following property:
(P) There is a number ω such that any two points x and y of A are joined by an arc in A of length less than or equal to $\omega r_{x y}\left(r_{x y}\right.$ being the distance between x and y).

This property was made use of in [2]; its necessity in the theorem is shown by two examples below.
A second theorem removes the boundedness condition in the first theorem, and weakens the hypothesis (P); its proof makes use of the proof of the first theorem. We remark that in each theorem, as in [1], the extended function is a linear functional of its values in A.

The proof of Theorem I is obtained by examining the proof in [1]; hence we assume that the reader has this paper before him, and we shall follow its notations closely.
Theorem I. Let A be a bounded closed set in n-space E with the property (P), and let m be a positive integer. Then there is a number α with the following property. Let $f(x)$ be any function of class C^{m} in A, with derivatives $f_{k}(x)\left(\sigma_{k}=k_{1}+\cdots+k_{n} \leqq m\right)$. Suppose

$$
\left|f_{k}(x)\right|<\eta \quad\left(x \in A, \sigma_{k} \leqq m\right)
$$

Then $f(x)$ may be extended throughout E so that

$$
\left|f_{k}(x)\right|<\alpha \eta \quad\left(x \in E, \sigma_{k} \leqq m\right) .
$$

Let d be the diameter of A, or 1 if this is larger, and let R be a spherical region of radius $2 d$ with its center at a point of A. Set $f(x)=0$ in $E-R$. Then the extension of f in $R-A$ given in [1] will be shown to have the property, using

$$
\alpha=2 n(m!)^{n}(m+1)^{3 n}\left(433 n^{1 / 2} d \omega\right)^{m} c N
$$

where N and c are as given in $[1, \S \delta 11,12]$. Note that $433=4 \cdot 108+1$.

[^0]Set $B=A \cup(\bar{R}-R)$. We show first that for any points $x^{\prime}, x^{\prime \prime}$ of B,

$$
\left|R_{k}\left(x^{\prime} ; x^{\prime \prime}\right)\right|<\beta r_{x^{\prime} x^{\prime}, \eta}^{m-\sigma_{k}}, \quad \beta=2 n(m+1)^{n} \omega^{m} .
$$

Suppose first that x^{\prime} and $x^{\prime \prime}$ are in A. Let C be a curve in A joining them, of length less than or equal to $\omega r_{x^{\prime} x^{\prime \prime}}$. The inequality is then a consequence of [2, Lemma 3]. Suppose next that one of the points is in A, and the other is in $\bar{R}-R$ (the case that both are in $\bar{R}-R$ is trivial). By [1, (3.1)], since $r_{x^{\prime} x^{\prime \prime}} \geqq d \geqq 1$,

$$
\begin{aligned}
\left|R_{k}\left(x^{\prime} ; x^{\prime \prime}\right)\right| & \left.\leqq \eta+\sum_{\sigma_{l} \leqq m-\sigma_{k}} \eta r_{x^{\prime} x^{\prime}}^{\sigma_{l}} \leqq \begin{array}{r}
m-\sigma_{k} \\
x_{x^{\prime} x^{\prime} \eta}
\end{array} 1+\sum_{\sigma_{l} \leqq m-\sigma_{k}} 1\right] \\
& \leqq(m+1)^{n} r_{x^{\prime} x^{\prime} x^{\prime} \eta .}^{m-\sigma_{k}} .
\end{aligned}
$$

Now take any x in $R-B$. Let $\delta^{*} / 4$ be the distance from x to B, and let x^{*} be a point of B distant $\delta^{*} / 4$ from x. Say x is in the cube C of the set of cubes K_{g}; let $I_{\lambda_{1}}, \cdots, I_{\lambda_{t}}$ be those I_{λ} with points in C (see [1, §11]). Now y^{ν} is the center of I_{ν}, and x^{ν} is a nearest point of B to y^{ν}. As noted in [1, (9.1)], $r_{y^{\nu} x^{*}}$ and $r_{y^{y} x^{y}}$ each lie between $\delta^{*} / 8$ and $\delta^{*} / 2$. Since $r_{x y^{\nu}}<\delta^{*} / 2$, we have

The definition of ζ in $[1, \S 11$] together with [1, (6.3)] gives

$$
\zeta_{\nu ; k}(x)=\psi_{k}\left(x ; x^{\nu}\right)-\psi_{k}\left(x ; x^{*}\right)=\sum_{\sigma_{l} \leq m-\sigma_{k}} \frac{R_{k+l}\left(x^{\nu} ; x^{*}\right)}{l!}\left(x-x^{\nu}\right)^{l} .
$$

Hence

Following [1, §11] still, we find

$$
\left|D_{k g}(x)-\psi_{k}\left(x ; x^{*}\right)\right|<c \sum_{\sigma_{l} \leq m-\sigma_{k}}(m!)^{n} 2^{s \sigma_{l}} N(m+1)^{n} \beta \delta^{*} m-\sigma_{k}+\sigma_{\eta} .
$$

As in [1], $2^{*}<108 n^{1 / 2} / \delta^{*} ;$ hence

$$
\left|D_{k} g(x)-\psi_{k}\left(x ; x^{*}\right)\right|<c(m!)^{n} N(m+1)^{2 n}\left(108 n^{1 / 2}\right)^{m \beta \delta^{*} m-\sigma_{k}} .
$$

Moreover, since $r_{x x^{*}}<3 d,[1,(6.1)]$ gives

$$
\left|\psi_{k}\left(x ; x^{*}\right)\right|<3^{m}(m+1)^{n} d^{m} \eta .
$$

Since $\delta^{*} \leqq 4 d$ and $f(x)=g(x)$ in $R-B$, the theorem follows.
We turn now to the second theorem. We shall say A satisfies (P) locally if for each $x \in A$ there is a neighborhood U of x and a number
ω such that any two points y and z of $A \cap U$ are joined by an arc in A of length not greater than $\omega r_{x y}$.

Theorem II. Let A be a closed subset of an open set R in E, satisfying (P) locally, and let m be a positive integer. Then for any continuous function $\epsilon(x)$ defined and greater than 0 in R there is a continuous function $\delta(x)$ defined and greater than 0 in A with the following property. Let $f(x)$ be any function of class C^{m} in A, such that

$$
\left|f_{k}(x)\right|<\delta(x) \quad\left(x \in A, \sigma_{k} \leqq m\right)
$$

Then $f(x)$ may be extended throughout R so that

$$
\left|f_{k}(x)\right|<\epsilon(x) \quad\left(x \in R, \sigma_{k} \leqq m\right)
$$

Remarks. The preceding theorem is easily seen to be a consequence of this one. The present theorem holds if E is replaced by a differentiable manifold M, in which a fixed set of coordinate systems (each one intersecting but a finite number of others) is used to measure the size of derivatives. To show this, we imbed M in a Euclidean space E^{\prime} (see [3, Theorem 1]), giving $A \subset R \subset R^{\prime} \subset E^{\prime}$ (R^{\prime} open in E^{\prime}; we let R^{\prime} contain no points of the limit set of M), extend f throughout R^{\prime} (see the proof of [3, Lemma 4]), and consider its values in R.

To prove the theorem, we begin by choosing spherical regions U_{1}, U_{2}, \cdots, each $\bar{U}_{i} \subset R$, with the following properties:
(a) Each U_{i} is in a neighborhood U as described above.
(b) Each \bar{U}_{i} intersects but a finite number of other \bar{U}_{j}.
(c) If U_{i} is of radius ρ_{i}, and U_{i}^{\prime} is the concentric region of radius $\rho_{i} / 2$, then $R=\sum U_{i}^{\prime}$.

Let $\psi^{i}(x)$ be a function of class C^{m} in E such that

$$
\begin{array}{lr}
\psi^{i}(x)>0 & \left(x \in U_{i}^{\prime}\right) \\
\psi^{i}(x)=0 & \left(x \in E-U_{i}^{\prime}\right)
\end{array}
$$

Set

$$
\phi^{i}(x)=\psi^{i}(x) / \sum \psi^{i}(x) \quad(x \in R)
$$

then $\phi^{i}(x)$ is of class C^{m} in R, and

$$
\begin{array}{rr}
\phi^{i}(x)=0 & \left(x \in R-U_{i}^{\prime}\right) \\
\sum \phi^{i}(x)=1 & (x \in R)
\end{array}
$$

The extension of $f(x)$ is defined as follows. Set

$$
\begin{array}{lr}
f^{i}(x)=\phi^{i}(x) f(x) & (x \in A) \\
f^{i}(x)=0 & \left(x \in R-U_{i}\right)
\end{array}
$$

Then f^{i} is of class C^{m} in $A \cup\left(R-U_{i}\right)$. Extend it as in [1] (using a fixed
subdivision of $U_{i}-A$; we could set $f^{i}(x)=0$ in $\left.E-R\right)$ to be of class C^{m} in R (or E). (Note that if $A \cap U_{i}^{\prime}=0$, then $f^{i}(x)=0, x \in R$.) Set

$$
f(x)=\sum f^{i}(x) \quad(x \in R)
$$

Then f is an extension of class C^{m} of its values in A. We must show that it satisfies the condition of smallness.

Choose $a_{i} \geqq 1$ so that

$$
\left|\phi_{k}^{i}(x)\right| \leqq a_{i} \quad\left(x \in R, \sigma_{k} \leqq m\right)
$$

then if $\left|f_{k}(x)\right|<\eta\left(x \in A \cap U_{i}^{\prime}\right)$,

$$
\left|f_{k}^{i}(x)\right|=\left|\sum_{\sigma \leq \sigma_{k}} \phi_{l}^{i}(x) f_{k-l}(x)\right| \leqq(m+1)^{n} a_{i} \eta \quad(x \in A)
$$

By the choice of U_{i}, there is an ω_{i} such that any x^{\prime} and $x^{\prime \prime}$ in $A \cap U_{i}$ are joined by an arc in A of length not greater than $\omega_{i} r_{x^{\prime} x^{\prime \prime}}$. Set $\sigma_{i}=\max \left(1,2 / \rho_{i}\right)$. If R_{k}^{i} is the remainder for f_{k}^{i}, we shall show that for any x^{\prime} and $x^{\prime \prime}$ in $A \cup\left(R-U_{i}\right)$,

$$
\left|R_{k}^{i}\left(x^{\prime} ; x^{\prime \prime}\right)\right|<2 n(m+1)^{2 n} \omega_{i}^{m} a_{i} \sigma_{i}^{m} r_{x^{\prime} x^{\prime} \prime}^{m-\sigma_{k}} .
$$

If x^{\prime} and $x^{\prime \prime}$ are both in U_{i}, we apply [2, Lemma 3]. If $x^{\prime} \in R-U_{i}$ and $x^{\prime \prime} \in U_{i}^{\prime}$, or vice versa, then $r_{x^{\prime} x^{\prime \prime}} \geqq \rho_{i} / 2$, and the proof in the preceding theorem applies; we consider separately the cases $\rho_{i} / 2 \geqq 1$, $\rho_{i} / 2<1$, using $r_{x^{\prime} x^{\prime \prime}} \geqq 1$ and $\sigma_{i} r_{x^{\prime} x^{\prime \prime}} \geqq 1$ respectively. If $x^{\prime} \in R-U_{i}$ and $x^{\prime \prime} \in R-U_{i}^{\prime}$, or vice versa, $R_{k}^{i}=0$, since $\phi_{l}^{i}\left(x^{\prime}\right)=\phi_{l}^{i}\left(x^{\prime \prime}\right)=0$. The proof of the preceding theorem now shows that for some α_{i}, if
then

$$
\left|f_{k}\left(x^{\prime}\right)\right|<\eta \quad\left(x^{\prime} \in A \cap U_{i}^{\prime}, \sigma_{k} \leqq m\right)
$$

$$
\left|f_{k}^{i}(x)\right|<\alpha_{i} \eta \quad\left(x \in R, \sigma_{k} \leqq m\right)
$$

(We may set $\alpha_{i}=1$ if $A \cap U_{i}^{\prime}=0$.)
Given $\epsilon(x)$, we determine $\delta(x)$ as follows. For each $x \in R$ there is a set of numbers $\lambda_{1}, \cdots, \lambda_{s}, s=s(x)$, such that

$$
x \in \operatorname{each} U_{\lambda_{j}}^{\prime}, \quad x \in \text { no other } U_{i}^{\prime}
$$

Because of (b), s is finite. Set $\alpha(x)=\alpha_{\lambda_{1}}{ }^{\gamma}+\cdots+\alpha_{\lambda_{\varepsilon}}$.
We can clearly choose a continuous function $\beta(x)$ in R such that

$$
\alpha(x)<\beta(x) \quad(x \in R)
$$

We may now choose a continuous function $\delta\left(x^{\prime}\right)>0$ in A such that
for any $x^{\prime} \in A$, if $U_{\mu_{1}}^{\prime}, \cdots, U_{\mu_{t}}^{\prime}$ are the U_{i}^{\prime} containing x^{\prime}, then

$$
\delta\left(x^{\prime}\right) \leqq \epsilon(x) / \beta(x) \quad\left(x \in U_{\mu_{1}}^{\prime} \cup \ldots \cup U_{\mu_{t}}^{\prime}\right)
$$

Now take any f of class C^{m} in A, with $\left|f_{k}(x)\right|<\delta(x)\left(x \in A, \sigma_{k} \leqq m\right)$; the extension of f through R has been defined. Take any $x \in R$; define $\lambda_{1}, \cdots, \lambda_{s}$ as above. Then

$$
\left|f_{k}\left(x^{\prime}\right)\right|<\delta\left(x^{\prime}\right) \leqq \epsilon(x) / \beta(x) \quad\left(x^{\prime} \in A \cap U_{\lambda_{j}}^{\prime}, \sigma_{k} \leqq m\right)
$$

and hence

$$
\left|f_{k}^{\lambda_{j}}(x)\right|<\alpha_{\lambda_{j}} \epsilon(x) / \beta(x) \quad\left(\sigma_{k} \leqq m\right)
$$

Since $f_{k}(x)=f_{k}^{\lambda_{1}}(x)+\cdots+f_{k}^{\lambda_{s}}(x)$,

$$
\left|f_{k}(x)\right|<\alpha(x) \epsilon(x) / \beta(x)<\epsilon(x)
$$

for $\sigma_{k} \leqq m$, which completes the proof.
Examples. (1) Let A consist of a point, together with a sequence of points approaching it. Letting $f(x)=1$ at a finite number of points of the sequence, and $f(x)=0$ in the rest of A shows (with $m=1$) that the theorem fails here.
(2) Let A be the closed region of the plane defined by (a) $x^{2}+y^{2} \leqq 1$, and (b) either $x \leqq 0$ or $|y| \geqq x^{3 / 2}$. Let $f(x, y)=0$ if $x \leqq 0$, and set

$$
f(x, y)=\left\{\begin{aligned}
\gamma x^{2} /\left(1+\gamma^{2} x^{2}\right) & \text { if } \quad x \geqq 0, y>0, \\
-\gamma x^{2} /\left(1+\gamma^{2} x^{2}\right) & \text { if } \quad x \geqq 0, y<0 .
\end{aligned}\right.
$$

We see easily that f is of class C^{1} in A. (It would not be if, in (b), we used $|y| \geqq x^{2}$.) The maximum $\partial f / \partial x$ occurs at $x=1 /\left(3^{1 / 2} \gamma\right)$, and has the value $9 /\left(8 \cdot 3^{1 / 2}\right)$. Set

$$
p=\left(1 / 3^{1 / 2} \gamma, 1 / 3^{3 / 4} \gamma^{3 / 2}\right), \quad q=\left(1 / 3^{1 / 2} \gamma,-1 / 3^{3 / 4} \gamma^{3 / 2}\right)
$$

Then

$$
\frac{f(p)-f(q)}{r_{p q}}=\frac{2 \gamma / 3 \gamma^{2}}{1+\gamma^{2} / 3 \gamma^{2}} \div \frac{2}{3^{3 / 4} \gamma^{3 / 2}}=\frac{3^{3 / 4}}{4} \gamma^{1 / 2}
$$

Hence, in any extension of f through the plane, we must have $|\partial f / \partial y| \geqq 3^{3 / 4} \gamma^{1 / 2} / 4$ at some point (between p and q); yet $|f|,|\partial f / \partial x|$ and $|\partial f / \partial y|$ are uniformly bounded for all $\gamma>1$. Taking γ arbitrarily large shows that the conclusion of the theorem does not hold.

References

1. H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. vol. 36 (1934) pp. 63-89.
2. ——, Functions differentiable on the boundaries of regions, Ann. of Math. vol. 35 (1934) pp. 482-485.
3. ——, Differentiable manifolds, Ann. of Math. vol. 37 (1936) pp. 645-680.
4. ——, Differentiable functions defined in arbitrary subsets of Euclidean space, Trans. Amer. Math. Soc. vol. 40 (1936) pp. 309-317. Further references are given here.
5. H. O. Hirschfeld, Continuation of differentiable functions through the plane, Quart. J. Math. Oxford Ser. vol. 7 (1936) pp. 1-15.
6. M. R. Hestenes, Extension of the range of a differentiable function, Duke Math. J. vol. 8 (1941) pp. 183-192.

Harvard University

THE SYMMETRIC JOIN OF A COMPLEX

C. E. CLARK

1. The definition of J. Let K be a polyhedron. With each pair of distinct points p, q of K we associate a closed line segment $p q$. No distinction is made between p and q and the corresponding end points of $p q$. The length of $p q$ is a continuous function of p and q, and the length approaches zero if p and q approach a common limit. Distinct segments do not intersect except at a common end point. The points of these segments with their obvious natural topology make up J, the symmetric join of K. This space arises in [4] ${ }^{1}$ in connection with the problem of finding the chords of a manifold that are orthogonal to the manifold.
2. The subdivision of J. Let the mid-point of $p q$ be denoted by $\Lambda p \times q=\Lambda q \times p$, and let $p=\Lambda p \times p$. These points $\Lambda p \times q$ make up the symmetric product S of K. Let the mid-point of the segment from p to $\Lambda p \times q$ be denoted by $p \times q$, and let $p=p \times p$. These points $p \times q$ make up the topological product $P=K \times K$. Consider the closed segment of $p q$ from $p \times q$ to $q \times p$, it being understood that this segment is the point p when $p=q$. All such segments form the "neighborhood" N_{s}. Clearly N_{s} can be homotopically deformed in N_{s} along the segments $p q$ upon S with S remaining pointwise invariant. Finally consider the closed segment of $p q$ from p to $p \times q$, it being understood that this segment is the point p when $p=q$. All such segments form the "neighborhood" N_{K}. Clearly N_{K} can be homotopically deformed in N_{K} along the segments $p q$ upon K with K remaining pointwise invariant.
[^1]
[^0]: Presented to the Society, September 13, 1943; received by the editors November 27, 1943.
 ${ }^{1}$ Numbers in brackets refer to the references cited at the end of this paper.

[^1]: Received by the editors July 23, 1943.
 ${ }^{1}$ Numbers in brackets refer to the Referencès at the end of the paper.

