
THE HIGHER COMMUTATOR SUBGROUPS OF A GROUP 

REINHOLD BAER 

It is not the object of this address to introduce you to new theories 
or to tell of great discoveries. Quite on the contrary; I intend to speak 
of unsolved problems and of conjectures. In order to describe these, 
certain concepts will have to be discussed ; and for obtaining a proper 
perspective it will be necessary to mention a number of theorems, 
some of them new. The proofs of the latter will be relegated to ap­
pendices so that the hurried reader may skip them easily. The bib­
liography is in no sense supposed to be complete. We just selected 
convenient references for facts mentioned and beyond that just 
enough to be a basis for further reading. 

1. The hierarchy of invariant subgroups. The subgroups of a group 
may be classified according to the operations which leave them in­
variant. There are first the normal subgroups of the group G, charac­
terized by the fact that they are transformed into themselves by the 
inner automorphisms of G; and for this reason they had at one time 
appropriated the term "invariant subgroup." There are next the char­
acteristic subgroups of G which are left invariant by every automor­
phism of (3. Clearly not every subgroup of G is normal, unless G 
belongs to a comparatively special class of groups, the so-called 
abelian and hamiltonian groups; and neither is in general every nor­
mal subgroup characteristic, though this may happen too (for ex­
ample, in cyclic groups and in simple groups). 

These two classes of subgroups are well known, but for our pur­
poses they are too big. There is next the class of subgroups which 
we shall term for lack of a better name strictly characteristic. A sub­
group S of G belongs to this class if Sf£S whenever ƒ is an endomor-
phism1 of G and G/ = G. The distinction between characteristic and 
strictly characteristic subgroups does not cut very deep, since there 
exists a very big class of groups with the following property: 

(Q) UI is an endomorphism of G such that Gfs=G1 then f is an auto­
morphism of G. 

This postulate (Q) is satisfied by every finite group and more gen­
erally by every group satisfying the ascending chain condition for 
normal subgroups. But the Q-groups are not exhausted by the groups 

An address delivered before the Annual meeting of the Society in Chicago on 
November 27, 1943; received by the editors January 5, 1944. 

1 An endomorphism of the group G is a single-valued and multiplicative G to G 
function. 
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just mentioned, witness the free groups on a finite number of genera­
tors.2 However, there exist groups that are not Q-groups, for instance 
the rational numbers modulo 1 and the free groups on an infinity of 
generators; and an example of a characteristic subgroup which is not 
strictly characteristic will be constructed in Appendix I. 

Finally we have the fully invariant subgroups.8 A subgroup 5 of 
the group G is termed fully invariant if Sf S S for every endomorphism 
ƒ of G. Examples of groups whose centers are not fully invariant are 
easily constructed.4 On the other hand it is readily verified that the 
center is always a strictly characteristic subgroup. For if z is an ele­
ment in the center of the group G, and if & = G is satisfied by the 
endomorphism ƒ of G, then there exists to every element x in G an 
element y in G satisfying x=yf; and we find 

zfx « zfyf = (zy)f = (yz)f « yfzf — xzf 

so that zf is in the center too. Examples of fully invariant subgroups 
are obtained by forming the subgroup Gn generated by all the nth. 
powers of elements in G, or the commutator subgroup (G, G) of G 
which is generated by all the commutators (x, y)~x~'1y"~lxy. More 
generally it may be said that the "word subgroups" in the sense of 
B. Neumann and P. Hall5 are fully invariant whereas the "marginal 
subgroups" may only be shown to be characteristic. 

The importance of characteristic subgroups stems from the fact 
that they themselves and their quotient groups are group invariants. 
But if we compare different groups, we have to have a method for 
deciding which are "corresponding" invariants of the different 
groups.6 For it would not do to compare the structure of G3 with 
the structure of fl6 or the order of G with the maximum order of the 
elements in H. We indicate one such possibility of comparing the 
fully invariant subgroups of different groups. If S is a subgroup of 
the group G, then we denote by (G—>JEf; S) the subgroup of the group 
H which is generated by all the elements sf for s an element in S 
and ƒ a homomorphism of G into H. It is readily seen that (G—>H; S) 

* For proofs of this theorem see F. Levi [l, p. 95] and W. Magnus [l, p. 276, 
VIII J. 

Criteria for Ç-groups may be found in R. Baer [2], D. I. Fouxe-Rabinowitsch [l], 
and A. Malcew [ l ] . Numbers in brackets refer to the Bibliography at the end of the 
paper. 

8 This concept is due to F. Levi [l ]. 
4 See, for example, Appendix I below. 
«P.Hall [2], B. Neumann [l] . 
6 See in this context the functors discussed by Eilenberg and MacLane [2]. 
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is always a fully invariant subgroup of H; and if S is a fully invariant 
subgroup of G, then we have 

(H-+G;(G->H;S))gS. 

Equality we cannot always expect. But if G and H are both free 
groups on an infinity of generators, then equality holds, so that the 
fully characteristic subgroups of G ànd H form isomorphic partially 
ordered sets.7 

APPENDIX I : EXISTENCE OF CHARACTERISTIC, BUT NOT STRICTLY 

CHARACTERISTIC SUBGROUPS 

Let F be a finite group which is not abelian. Then F contains a 
cyclic subgroup T which is not part of the center of F. Denote by Z a 
cyclic group whose order equals the order of T and denote by G(0) the 
direct product of F and Z. I t is clear that Z is part of the center of 
G(0) and that there exists an endomorphism ƒ(0) of G(0) which maps 
F upon 1 and which effects an isomorphism of Z upon T. 

Since G(0) is a finite group, there exists a free group G(l) on a 
finite number of generators and a homomorphism/(l) of G(l) upon 
the (full) group G(0). Denote by G{i) for Ki groups isomorphic to 
G(l) and by f{i) an isomorphism of G(i) upon G(i — 1) for 1 <i. Finally 
let G be the free product8 of all the groups G{i) for 0£i. Then there 
exists9 one and only one endomorphism ƒ of G which induces f{i) in 
G(i) for O^ i ; and it is clear that G~&. 

Suppose now that B is a finite subgroup of G. Then it follows 
from a theorem on the subgroups of free products10 that B is the free 
product of a free group V and of groups of the form11 BC\x~"lG($)x. 
But B is a finite group and therefore it cannot contain a free group 
different from 1, nor can it be the free product of two groups different 
from 1. On the other hand free groups do not possess finite subgroups 
different from 1, since subgroups of free groups are free.12 Thus we 
have shown the following fact. 

If B is a finite subgroup of G, then B^x-xG(Qi)x or xBx"-lSG(Q) for 
suitable x in G. 

Denote now by C the subgroup of G which is generated by the 

* Baer [3]. 
8 For the theory of free products see, for example, Baer and Levi [l] . 
9 If we had formed the direct product of the groups G(i) instead of forming their 

free product, then it would have been impossible to construct this endomorphism ƒ. 
10 Baer and Levi [l, p. 392]. 
11 By SOT we designate the crosscut of the sets S and T. 
12 By Schreier's theorem. 
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center D of G(0) and by all its conjugates in G. If g is an automor­
phism of G, then G(0)° is a finite subgroup of G. Hence it follows 
from the lemma just proved that G(0)°=y^1G(0)y for some y in G. 
Consequently D—yDoy1, since D is a characteristic subgroup of 
G(0), and since the succession of g and of the inner automorphism 
s-^ysy1 of G induces an automorphism of G(0). But from this fact 
one readily deduces that C is a characteristic subgroup of G. 

From the theorems13 on subgroups of free products one deduces now 
that C is the free product of D and of some conjugates to D in G. 
Thus D is a free factor of C and is consequently the crosscut of C 
and G(0). This shows in particular that T is not part of C. But T is 
part of C', since £>' = £>'«» = 7\ Hence 

C is not a strictly characteristic subgroup of G. 

2. Commutator subgroups. If S and T are subsets of the group G, 
then we denote by (5, T) the subgroup generated by all the commuta­
tors (s, t) — s^H^st for s in 5 and / in T. If S and T are fully invariant 
subgroups of G, then so is (5, T). Thus it is possible to use this opera­
tor for the inductive definition of fully invariant subgroups. We men­
tion two important instances. 

The derived series: G™=G, G<*+1> = (G<*>, G<*>). 
The lower central series: °G = Gf

 i+1G = (G, iG). 
These are not the only possibilities. For instance, one could define 
a series G(i) of fully invariant subgroups by the following recursion 
formulas: 

G(0) - G, G(l) » (G, G), G(i + 1) = (G(f), G{% - 1)) for 0 < i. 

But so far only the derived and the lower central series seem to have 
proved interesting. A systematic method of constructing higher com­
mutator subgroups has been evolved by P. Hall.14 But his construc­
tions are too involved to be sketched in a few words. 

The calculus of commutator subgroups is based on the following 
simple formulas, which are easily verified by direct computation.16 

(1) (*, y) - (y, x)-1. 
(2) (xy, z) = yr\%, z)y(y, z) = (x, *)((*, 0), y)(y, z). 

(3) (x, yz) = (x, z)z-\x, y)z = (s, s)(s, (y, x))(x, y). 

If X, F, Z are subgroups of the group G, then one deduces from these 

1$ Baer and Levi [l, p. 396, Folgerung 3] , 
14 Hall [l] , in particular p. 43-48. 
«Hall [1, p. 43]. 
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formulas the following results. 

(4) (X, F) - (F, X). 

(5)1* (X, (F, Z)) £ (F, (Z, Z))(Z, (X, F)). 

An induction argument using the definitions of derived and lower cen­
tral series as well as formulas (4) and (5) leads now to the inequalities 

(6)17 (*G, >G) g «+WG, G«> S *-*G. 

Thus the derived series decreases much more rapidly than the lower 
central series. Another significant distinction between these two se­
ries is the fact that G ( W ) is a fully invariant subgroup of G(i) whereas 
*+1G need not be a fully invariant subgroup of fG. A property common 
to both these series is the fact that the quotient groups of successive 
members are abelian. 

Special properties of such series of fully invariant subgroups are 
invariant properties of the underlying groups and may therefore be 
used for characterizing special classes of groups. We give two ex­
amples of such properties. 

(S) 1 is the crosscut of the groups G(0. 
(N) 1 is the crosscut of the groups *G. 
It is an immediate consequence of formula (6) that every AT-group 

is an 5-group, though the converse is not true. In fact, finite 5-groups 
are just the soluble groups whereas finite iV-groups are exactly the 
nilpotent groups.18 Finite nilpotent groups are known to be direct 
products of ^-groups ; and this theorem may be generalized as follows. 

Every N-group without elements of order19 0 is the direct product of 
{finite or infinite) p-groups.20 

In Appendix II we prove this theorem and we construct an ex­
ample of a p-group P satisfying P(2) = 1, though it is not an iV-group, 
showing that the converse of the above theorem does not hold. 

AT-groups generated by a finite number of elements may be shown 
to be Q-groups (as defined in §1),21 though there exist S-groups gen­
erated by two elements which are not Q-groups.22 

16 Hall [1, p. 47, Theorem 2.3]. 
11 Hall [1, p. 53, Theorem 2.51 and p. 54, Theorem 2.54]. 
18 See, for example, Baer [l], where further references may be found. 
19 An element in a group is said to be of order 0 if it generates an infinite cyclic 

group. 
80 A />-group is a group all of whose elements are of order a power of p. 
21 See, for example, Fouxe-Rabinowitsch [ l] . 
22 For proofs of these facts, cp. Baer [2]. 
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Finally we indicate a method23 for proving that a given group G 
is an i\f-group. Suppose that the ring R contains an identity element 1 
(satisfying rl~lr = r for every r in i?), that 0 is the crosscut of the 
powers P* of the two-sided ideal P in i?, and that G is a multiplicative 
group of elements in R meeting the requirement : 

gssl modulo P for g in G. 
If g is an element in G, then there exist uniquely determined ele­

ments g', g" in P such that g = 1 +g' and g~x = 1 +g"; and g" belongs 
to P* if g' is an element in P\ If g, h are elements in G, and if W, h" 
belong to P\ then 

(g. *) - (1 + g")(l + *")(! + «0(1 + *0 
s 1 + g" + A" + £*+* ' + g"g' + ^ V modulo P«* 

s 1 modulo Pf+1. 

Thus one is able to prove by complete induction the following fact : 
If g belongs to *G, then g SE 1 modulo P m . Consequently G itself is 
an JV-group, since the crosscut of the ideals Pi is 0. 

If T and S S T are normal subgroups of the group G, then we de^ 
note by S+T the set of all the elements x in G satisfying (x, T)£S. 
It is readily seen24 that the set 5-5- T is a normal subgroup of G; and 
if 5 and T are characteristic subgroups of G, so is their commutator 
quotient S-r-T. The best known example is the center 1-5-G of the 
group G or more generally : 

The upper central series: Z0(G) = 1, Z<(G) =Zt-i(G)-5-G for 0<i . 
Interesting relations between upper and lower central series öf a 

finite £-group have been discovered by P. Hall.25 There are, however, 
fundamental differences, since the one series is descending, the other 
ascending, the one consists of fully invariant subgroups, the other of 
strictly characteristic subgroups which need not be fully character­
istic. 

In analogy to the definition of N- and 5-groups one is led to the 
Z-groups, meeting the following requirement.26 

(Z) Every element in G is contained in at least one Zi(G). 
A finite group is known to be a Z-group if, and only if, it is an 

iV-group. But in general no such relation holds. The non-abelian free 
groups are examples of iV-groups with centers equal to 1, and there 

23 This method has been introduced by W. Magnus [l] who used it to prove that 
free groups are iV-groups. 

24 Baer [3], Zassenhaus [l]. 
26 Hall [1, p. 53, Theorem 2.51]. 
28 Baer [ l ] . 
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exist ^-groups with this property.27 An example of a Z-group, not an 
i\T-group, will be constructed in Appendix II.28 

APPENDIX II : NILPOTENCY OF N-GROUPS 

If x and y are elements of order a power of p in the iNT-group G 
without elements of order 0, then the order of xy is of the form 
ipJ' where i is an integer prime to p. We denote by W the subgroup 
generated by x and y; and we put (xy)p =2 so that z is an element of 
the order i prime to p. From kW^kG we infer that 1 is the crosscut 
of the subgroups kW. 

We are going to prove by complete induction with regard to k that 
W/kW is a finite group for every k. This is certainly true for fc = 0; 
and thus we assume its validity for & —1> Since W is generated by a 
finite number of elements, and since W/k"~1W is finite, we deduce from 
the Reidemeister-Schreier method29 that k~lW is generated by a finite 
number of elements. Consequently h~lW/hW is an abelian group, gen­
erated by a finite number of elements whose orders are different 
from 0. This implies the finiteness of k"1W/kWf proving that W/kW 
is finite too. 

Since W/kW is a finite group whose lower central series ends with 1, 
and since W/kW is generated by two elements of order a power of p, 
it follows from well known theorems80 that W/kW is a p-group. Hence 
3=1 modulo kW for every positive k. Thus z belongs to the crosscut 
of the subgroups kW. But this crosscut is 1, showing that z = 1. There­
fore we have proved the following fact. 

If x and y are elements of order a power of p in the N-group G with­
out elements of order 0, then xy is an element of order a power of p. 

If we denote by G(p) the set of all the elements of order a power 
of p in Gf then it follows from the fact just established that G(p) is a 
subgroup of G. Hence G(p) is a fully invariant and therefore a normal 
subgroup of G. If p and q are different primes, then G(p) and G(q) 
are normal subgroups of G which have only the identity in common. 
Consequently rs~sr for r in G(p) and 5 in G(q). Now it is readily 
seen that G is the direct product of its primary components G(p), as 
we desired to prove. 

The condition that the group G be an iV-group, though indispensa-
27 Baer [l, pp. 412, 413, Example 3.4], 
28 For another example of a Z-group, not an iV-group, see Baer [l, p. 406, Ex­

ample 2.5]. 
29 See, for example, Baer [l, p. 396 (1.3)] or Zassenhaus [l, p. 108]. 
80 See, for example, Zassenhaus [l, p. 107]. 
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ble for the preceding proof, is not a necessary condition, as will be 
seen from the following example of a p-group which is not an N-group. 

Denote by B the abelian group generated by elements J, &(1), 
&(2), • • • , b(i), • • • , subject to the relations: 

1 = ftp, b = b(i)pi for every positive i. 

It is readily seen that the crosscut Bp<a of all the groups Bp% is the 
cyclic group of order p, generated by 6, and that B/Bp<a is the di­
rect product of a cyclic group of order p by a cyclic group of order 
p2 • • • by a cyclic group of order pl • • • and that the elements b(i) 
represent a basis of B/Bp<*. 

Denote by g(i) the automorphism of B which maps b(i) upon 
b(i)%+p (and thus leaves b invariant) and which leaves all the b(j) 
for J9*i invariant. It is obvious that the automorphism g(i) is of 
order p* and that the automorphisms g(i), for positive it generate 
an abelian group. 

Let finally G be the group obtained by adjoining to B elements t(i) 
subject to the relations : 

1 = t(i)pi, t(i)-xxt(i) = xo(i) for x in B and positive i. 

This group G is an extension of the group B by the group of auto­
morphisms, generated by the g(iY$. 

Since G/B and B are both abelian ^-groups, G itself is a £-group. 
Furthermore G(2) = l. One verifies inductively that *G = J3P* and that 
the crosscut of the subgroups *G is therefore Bp(a9^ 1. Thus G has been 
shown to be a £-group, an S-group, but not an iV-group. 

Furthermore one verifies by complete induction that Zi(G), the ith 
term in the upper central series of G, is generated by the elements 
t(j) f° r 0<j<i and by the elements x in B which satisfy xpi~ 1. Thus 
G is a Z-group. 

3. Burnside's problem. Before the impact of topology on group 
theory made itself felt, group theory was concerned almost exclu­
sively with the study of finite groups. Practically the first fact noticed 
by the student of finite groups is that the orders of the elements in a 
finite group are bounded and different from 0. This latter property 
defines a larger class of groups, which we are going to discuss now. 

If the orders of the elements in the group G are bounded, then there 
exists the l.c.m. of the orders of all the elements in G. If m is this 
number, then xm = 1 for every x in G. Every group G is the homo-
morphic image of a free group F. If N is the kernel31 of the homomor-

81 The kernel of the homomorphism ƒ consists of those elements which are mapped 
upon 1 by/ . 
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phism mapping F upon G, then xm = 1 for x in G is equivalent to82 

P*^N; and thus G is not only the homomorphic image of the free 
group F, but even of F/F™. These free groups reduced modulo m may 
therefore be considered as universal groups for the class of groups 
under consideration. There is little known about their nature88 and 
Burnside's problem might be stated somewhat loosely as the problem 
of determining the structure of F/Fm. 

Let us start with a simple observation. The commutator (x, y) may 
be seen readily to equal 

(x, y) = x"~ly~lxy = {x^y^xYx^xyY 

so that we have in every group G the following relation : 

(G, G) S G2. 

This shows that F/F2 is abelian and this makes it possible to answer 
completely any question we might have concerning the structure of 
these groups F/F2. 

It may easily be derived from a not at all trivial result of F. Levi 
and B. L. van der Waerden84 that 

8G S G8; 

and thus one is led to the question whether there exists to every posi­
tive integer n an integer n1 such that 

n'G ^ Gn. 

The answer to this question is clearly in the negative, since we have 
noted before that n G^Gn implies that G/Gn is the direct product of 
its ^-components whereas not every group satisfying Gn = 1, for some 
ny is the direct product of its ^-components. As a matter of fact a 
still stronger result may be proved. 

If the free group F is not abelian, and if F/Fn is an N-group, then n 
is a power of a prime. 

For a proof of this theorem see Appendix III. For prime powers n 
we prove in Appendix III a still stronger result; to wit: 

If there exists an integer n' such that n'GSGnfor every group G, then 
n is a prime. 

32 pm | s t h e subgroup generated by all the mth powers of elements in the group F. 
88 This is the reason why so much more emphasis is laid upon the commutator 

subgroups than upon these subgroups Fm. 
84 Levi and van der Waerden [l, p. 155], 
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Whether or not the converse of either of these theorems holds true 
is not known at present; and a decision would constitute an important 
step towards a solution of Burnside's problem. 

The problem as Burnside himself conceived it was stated in a more 
limited fashion than we have considered it, since he imposed the ad­
ditional restriction upon the groups under consideration that they 
should be generated by a finite number of elements. For these groups 
he has stated two famous conjectures.36 

(I) F/Fn is finite for every free group F of finite rank.™ 
(II) F/Fn is soluble for n odd and F a free group of finite rank. 
These conjectures are certainly true for w = 2 and 3. 
The conjecture (II) may be restated in a somewhat more precise 

form, since (F/FnYl) = (FnF^)/Fn. 
(IV) If n is an odd integer and if m is a positive integer, then there 

exists an integer k—k(n, m) such that 

pik) <g F*> for F a free group of rank m. 

A similar restatement of (I) is impossible because of the existence 
of simple groups. But for prime powers n this is possible, if one re­
calls that the lower central series of a finite £-group ends with the 
identity and that <(F/jFn) = (*/? Fn)/Fn; and thus we obtain the fol­
lowing conjecture. 

(I') If n is a power of a prime, and if m is a positive integer, then 
there exists an integer h — h{n, m) such that 

hF g Fn for F a free group of rank m. 

That (I') and (II') imply the finiteness of F/Fn is a consequence 
of the following easily verified fact. If the group G is generated by a 
finite number of elements, and if every element in G is of finite order, 
then G/{G and G/G(i) are both finite groups. But (I') and (II') for 
prime powers are essentially equivalent conjectures, as may be seen 
from the following theorem, a proof of which may be found in Ap­
pendix III. 

If G is a p-group, generated by a finite number of elements, then there 
exist to every positive integer i integers V, i" such that 

VG ^ G<*\ G<«"> £ *G. 

But in case these conjectures should not be verified, then this theo-
88 Burnside [l], 
86 The rank r(F) of the free group F is the number of elements in any free set of 

generators of F. It is at the same time the rank of the free abelian group F/(Ft F), 
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rem still asserts that a p-group which is generated by a finite number of 
elements is an N-group if, and only if, it is an S-group. 

The importance of these statements may be seen from the follow­
ing almost obvious equivalence. 

If n is a power of a prime, and if F is a free group of finite rank, then 
the following two conditions are necessary and sufficient for finiteness 
of F/F\ 

(a) F/Fn is an N-group. 
(b) The lower central series of F/Fn is finite. 

But by the preceding remarks we may substitute for (a) and (b) 
the following conditions. 

(a') F/Fn is an S-group. 
(b') The derived series of F/Fn is finite. 
If n is a prime power such that F/Fn is an N- (or 5-)group for 

every free group F of finite rank, then one may verify the correspond­
ing statement for every F/Fn with free F. Furthermore it is immedi­
ately seen that F/Fn is an iV-group if, and only if, Fn is the crosscut of 
the subgroups *F Fn for all the integers i. The fact that free groups are 
i\f-groups may be considered an encouraging sign. But more is known. 
For Zassenhaus [2] proved a theorem from which it is easy to derive 
the fact that 1 is the crosscut of the groups *F FpV for p a prime 
and i = l, 2, • • • . All this, however, does not suffice to prove (a). 
Thus it may be a consolation to know that it is possible to substitute 
for (a) and (a') the following weaker conditions without impairing the 
validity of the above statements. 

(a*) If {F/Fn)/i{F/Fn)^\, then *+l(F/F»)<<(F//^). 
(a'*) If (F/Fn)/(F/Fn)w?*l, then (F/Fn)<i+»<(F/FnYiK 
Let us turn now to explaining the significance of condition (b) and 

its equivalent (b')- Denote by N the crosscut of all the subgroups 
i{F/Fn). For n a power of a prime, N is at the same time the crosscut 
of the subgroups (F/Fn)^K The following fact is now readily verified. 

If condition (b) is satisfied by the prime power n, if the free group F 
is of finite rank, then the following conditions are necessary and suffi­
cient for the group G to be a homomorphic image of the group (F/Fn)/N: 

(i) G is finite. 
(ii) G» = l. 
(iii) G may be generated by r(F) elements. 

Condition (b) has been verified for w = 5 and r(F) — 2 by P. Hall.87 

87 For a proof see Grün [2]. 



154 REINHOLD BAER [March 

Both conditions (a*) and (b) have been investigated recently with 
rather powerful tools.88 So far, however, the results obtained have not 
been of that striking nature that lends itself to easy narration. 

APPENDIX III : THE LOWER CENTRAL SERIES OF FREE 

GROUPS MODULO U 

THEOREM 1. If Fis a non-abelian free group and n a positive integer 
such that F/Fn is an N-group, then n is a power of a prime. 

PROOF. Suppose that n~n'n" is the product of the two relatively 
prime integers n' and n" both of which are different from 1. Denote 
by S the direct product of nr cyclic groups each of which is of order 
n", and let 5(1), • • • , s(nf) be a basis of S. There exists one and 
only one automorphism k of S which maps s(i) for 0<i<n' upon 
s(i+l) and s{n') upon 5(1). This automorphism k is clearly of order 
n'. Consequently there exists a group T which is obtained by adjoin­
ing to S an element t subject to the relations: 

tn' = 1, 1rlst = sk for s in S. 

This group T is an extension of the abelian group S of order #" n ' 
by the cyclic group T/S of order n'. If x is an element in T, then xn' 
is in S and xn = {xn')n"' = 1, since Sw" = l. Furthermore it is readily 
seen that T may be generated by the two elements t and 5(1). But T 
is not the direct product of its primary components, since the two 
elements t and 5(1) of the relatively prime orders n' and n" do not 
permute. 

Since F is a non-abelian free group, its rank is at least 2 and con­
sequently there exists a homomorphism h of F upon T. If H is the 
kernel of the homomorphism h, then we deduce Fn^H from !Tn = l ; 
and thus h induces a homomorphism of F/Fn upon T. Since T is 
not the direct product of its primary components, neither is F/Fn, 
as homomorphisms map primary components upon primary compo­
nents. We proved in Appendix II that iV-groups without elements of 
order 0 are the direct products of their primary components. Hence 
F/Fn is not an iV-group if n is not a power of a prime. 

THEOREM 2. If there exists an integer n' such that n'GSGn for every 
group G, then n is a prime. 

PROOF. Suppose that w, n' are positive integers such that n'F^Fn 

for every free group F of finite rank (this hypothesis which is weaker 
than the one enunciated in the theorem will be shown to be suffi-

88 Grim [l], Magnus [l, 2], Witt [l], Zassenhaus [2]. 
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dent). Then F/Fn satisfies n'(F/Fn)=*l. Hence F/Fn is an iV-group 
and it follows from Theorem 1 that n is a power of a prime. 

It has been shown elsewhere89 that there exists a group G with the 
following properties : 

(i) Both G/(G, G) and (G, G) are direct products of cyclic groups 
of order p. 

(ii) The center of G is equal to 1. 
From (i) one infers in particular that G(2) = 1 and that Gpt = 1. Thus 

there exists a representation of G as a quotient group of a free group : 
G^F/N satisfying F*%^N. 

Suppose now that the prime power n*=pm is not a prime, so that 
Km. Then it follows from a preceding remark that Fn£N and that 
G is a homomorphic map of F/Fn. Suppose now that the element x 
in F belongs to n'F. Then there exists a free factor V oi F which is a 
free group of finite rank such that x belongs to n' V. Now we may ap­
ply the hypothesis stated at the beginning of the proof, namely that 
n'V^ Vn. Thus x belongs to Vn and therefore to Fn

t and we have 
shown: n'FSFn^N. But this shows that the lower central series of 
G = F/N is finite and ends with 1, a fact that is readily seen to con­
tradict (ii). This contradiction proves that n is a prime. 

Let us term the positive integer n Bumsidean if F/Fn is finite for 
every free group F of finite rank. Then we may prove the following 
converse of Theorem 1. 

THEOREM 1'. If n is a Bumsidean prime power, and if F is a free 
group, then F/Fn is an N-group. 

PROOF. If x is an element not 1 in F, then there exists a homo­
morphism h oi F upon a free group V of finite rank such that xh 5^1, 
since F is the free product of two free groups V and W, the first one 
of which contains x and is of finite rank. This homomorphism h maps 
F{ upon V* and *F upon *V for every positive i. If x were contained 
in the crosscut "F of the subgroups *F, then xh would belong to the 
crosscut UV of the subgroups *V. But n is a Bumsidean prime power. 
Thus V/Vn is finite and of order a power of a prime. Hence there 
exists an integer w such that WV^ Vn. Since xh belongs to UV, it be­
longs to w V and therefore to Vn. But this implies that x belongs to F*f 

and hence we have shown "FSF", a fact that is equivalent to the 
assertion : F/Fn is an iV-group. 

We note that it would have been sufficient for our proof to make the 
hypothesis : F/Fn is an JV-group for every free group F of finite rank, 

89 Baer [l, pp. 412, 413, Example 3.4]. 
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a hypothesis that is considerably weaker than the assumption that n 
is Burnsidean. 

As an application of Theorem 1' we prove a converse of the theo­
rem proved in Appendix II. 

THEOREM 3. Suppose that the positive integer n is the product of 
Burnsidean prime powers, and that the group G satisfies Gn = 1. Then G 
is the direct product of its primary components if, and only if, G is the 
homomorphic image of an N-group H satisfying Hn = 1. 

PROOF. It is a consequence of a theorem established in Appendix II 
that iV-groups H satisfying Hn = 1 are the direct products of their 
primary components. Homomorphisms map direct products of p-
groups upon direct products of ^-groups, proving the sufficiency of 
our condition. 

Suppose conversely that G is the direct product of its primary com­
ponents. If w=£(l)w(1) • • • p{k)m™ with 0<m(i), 0<k, then G is the 
direct product of groups G{i) satisfying G(i)n{i) = 1 for n{i) =£(i)w(i). 
The group G(i) may be represented as a quotient group F(i)/M{i) 
of a free group F(i); and clearly F(i)n ( i )^M(i). Thus G(i) is the 
homomorphic image of F(i)/F(i)nii). By hypothesis n(i) is a Burnsi­
dean prime power and thus it follows from Theorem 1' that R(i) — 
F(i)/F(i)n(i) is an N-group. If R is the direct product of the i^-groups 
R(i), then Rn = l, R is an iV-group and G is the homomorphic image 
of R, proving our contention. 

THEOREM 4. If G is a p-group, generated by a finite number of ele­
ments, then there exist to every positive integer i integers i', i!t such that 

*'G g G<*>, G«"> ^ lG. 

PROOF. It is a consequence of a theorem quoted in §1 that we may 
select as V' any integer satisfying i<2*". 

Since 3'G/mG and GU)/G(i+1) are abelian groups the orders of whose 
elements are powers of the prime p, since such abelian groups are 
finite if they are generated by a finite number of elements, one proves 
inductively by the usual application of the Reidemeister-Schreier 
method40 that G/3'G and G/G™ are finite groups. Thus G/G(i) is a 
finite £-group, and such groups are known to have the property that 
their lower central series is finite and ends with 1. Hence there exists 
an integer V such that i'iG/G™) — ! and this is equivalent to 
i'GSG^. 

40 See footnote 29. 
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4. Invariants of the Hopf type. The group invariants discussed so 
far were subgroups and quotient groups of subgroups of the group 
under discussion. But there exist other possibilities of connecting 
groups with groups in an invariant fashion. An instance is the auto­
morphism group of a group. 

A group may be given either by inner properties or by some sort 
of representation. An example of the first kind of definition is the 
following one : the abelian group of order pn the orders of whose ele­
ments are 1 and p. An example of the second kind is the customary 
definition of the symmetric group of degree n. Though it is certainly 
more desirable to characterize a group by inner properties, it is more 
common to define it by some sort of representation, and very often a 
suitable representation makes a group better accessible to treatment. 

H. Hopf41 has recently discovered a group invariant derived from a 
representation of a group as a quotient group. He showed that for 
normal subgroups N of free groups F the quotient group 

depends only on the structure of F/N, and is an invariant of F/N. 
Now the groups F/Fn, discussed in §3, are defined by their representa­
tions only. Thus these Hopfian invariants and their generalizations 
may be a tool in their investigation. 

We indicate a new proof of Hopf s invariance theorem which has 
the advantage of being a convenient basis for many important gen­
eralizations. To simplify notation we restrict ourselves to a discussion 
of the lower central series, which is quite typical.42 

Suppose that i f is a normal subgroup of the group H. Then H/M 
is a representation of a certain group G. We define inductively sub­
groups iM by the formulas : oM=M, *Af = (H, t_iJkf). Then every iM 
is a normal subgroup of H, and we note the following inequalities : 

iM £ *H9 iM £ i^M and I ^ < I - f *H. 

1. Let us consider an endomorphism h of the group H, satisfying 
xh^x modulo M. Of h we say then that it induces the identity in 
H/M. Assume now that we have shown already that h induces the 
identity in *H/iM. Then a simple application of formulas (2), (3) of 
§2 shows that h induces the identity in i+1H/'i+\M. 

2. Consider now two representations H/M and K/N of the same 
group G and homomorphisms h, k of H into K and K into H respec­
tively with the following property: h induces an isomorphism a of 

«Hopf [1]. 
42 Baer [3]. 
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H/M upon K/N and k induces the isomorphism arl of K/N upon 
H/M. 

This hypothesis implies in particular Mh£N and Nh^M\ and one 
verifies readily that iHh^iKt

 iKk^iHt iMh£iN, iNk^4M. But hk 
induces the identity in H/M; and thus it follows from what we have 
shown under 1 that hk induces the identity in every *H/iM. From 
this fact and the previously stated inequalities one deduces immedi­
ately that h and k induce reciprocal isomorphisms between *H/iM and 
*K/iN. 

This implies in particular that the isomorphism a maps (»if -f- {H)/M 
upon {iN+W/N. 

3. We say now that two representations H/M and K/N of the 
group G are similar if every isomorphism between H/M and K/N 
may be induced by homomorphisms. Using this terminology the re­
sult obtained under 2 implies the following generalization of Hopf s 
invariance theorem: *H/iM and {iM^-iH)/M are invariants of the 
class of similar representations of G to which H/M belongs. 

I t should be mentioned that not every representation belongs to a 
class of similar representations. 

That this theorem is really a generalization of Hopfs theorem is a 
consequence of the fairly obvious fact that all representations of the 
group G as a quotient group of a free group (or of a free abelian 
group,43 or of a free group reduced modulo w, and so on) are similar. 

The range of applicability of these invariants seems to be fairly 
wide. So far they have been used mainly to show that homomor­
phisms meeting certain requirements are isomorphisms.42 

As these invariants have not been defined in an invariant fashion, 
one may desire an invariant definition. This may be obtained either 
by using a normal form of the representation which is trivial as far 
as it can be done and not very interesting, or by a properly invariant 
definition which does not refer to any representation. This latter 
problem seems to be fairly deep and has been solved so far apparently 
in only one instance.44 
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