ON THE EQUATION xa=vx+8 OVER AN ALGEBRAIC
DIVISION RING

R. E. JOHNSON

1. Introduction and notation. The main purpose of this paper is to
give necessary and sufficient conditions in order that the equation

1 xa = vx + B

have a solution x over an algebraic division ring. In case a solution
exists, it is given explicitly if it is unique; otherwise, a method of ob-
taining one of the solutions is given. The application of the results
to a quaternion algebra is discussed in the final section.

Let R be a division ring algebraic over its separable! center F, and A
a commutative indeterminate over R. Using the notation of Ore,? a
polynomial a(\) ER[A] of degree 7,

(2) a\) = e\ + A"+ -+« + a,

will be called reduced if a,=1. The unique reduced polynomial
m(\) EF[A\] of minimum degree for which m(a) =0 will be labelled
mo(\). It is apparent that m,(\) is irreducible over F[\]. The ring of
all elements of R which commute with a will be denoted by R.,.
The substitution of an element of R for A in the polynomial (1) is
not well defined, as A commutes with elements of R, whereas the ele-
ments of R do not all commute among themselves. However, unilat-
eral substitution is well defined. We shall use the symbol a*(3) to
mean that 8 has been substituted for A on the right in (2), so that

@) @ (B) = anB® + cnyf™t 4+ - + an.

Left substitution is defined similarly—as there is a complete duality
between left and right substitution in our case, we shall discuss right
substitution only. If a*(8) =0, B is called a right root of a(\). The nota-
tion a(N) |'b()\) is used to mean that a(\) is a right factor of 5(\). As s
well known,  is a right root of a(\) if and only if \—8) I'a()\).

2. Preliminary lemmas. A division algorithm exists over R[\].
The particular case of interest here is given by

Presented to the Society, November 27, 1943; received by the editors September
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1 That is, no irreducible polynomial in F[\] has a multiple root in R.

2 0. Ore, Theory of noncommutative polynomials, Ann. of Math. vol. 34 (1933)
pp. 481-508.
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@ b(N) = g\ = @) + b7(e).
That is, the remainder on dividing a polynomial b(\) on the right by
(\—a) is b7(c). For any two elements a(\), b(\) of R[\], there exists
a unique reduced greatest common right divisor and a unique reduced
least common left multiple.

The following lemma is true for any ring® R. It is frequently proven
for special cases.

LemMA A. If ¢c(N) =a(\)d(N), than b7(a) =0 implies c*(a) =0.

To prove this for a general ring, let a(A) =2_~o\%, BA) =D 0B\ :
then

) ) = E-:Oa( f_V"_"; ,s,w') N,

From this form, it is apparent that ¢'(a) =0 if b"(a) =0.
In any polynomial ring which possesses a division algorithm, the
following lemma holds.

Lemma B. If cQ\)=a(\)bQ\), then (A—a)|"c(\) if and only if
A—a) |"a)br(a).

From (4), c(\) =aM\)gAN) (N —a) +a(N)b7(c), and the lemma follows.

Over a division ring, this lemma can be put in the following form.

LemMma B’. If ¢c(N\) =a\)b(\) and T=>b"(a) %0, then a*(r+r~1) =0
if and only if c"(a) =0.

This result was obtained by Wedderburn,* and later by Richardson®
and, in a more general form, by Ore.2 Another result of Wedderburn's*
is the following lemma.

Lemma C. If a"(rar~Y) =0 for all nonzero elements 1 ER, then

ma(N) laQ)

The following fundamental theorem was obtained by Wedderburn*
for division algebras and holds equally well for algebraic division rings.

LeEMMA D. If mq(N) is of degree n, then there exist elements on( =),
oy, ¢+ v+, Qy tn R such that

8 See C. C. MacDuffee, Vectors and matrices (Carus Mathematical Monographs,
No. 7), Mathematical Association of America, 1943, Theorem 36.

¢ J. H. M. Wedderburn, On division algebras, Trans. Amer. Math. Soc. vol. 22
(1921) pp. 130-131.

5 A. R. Richardson, Equations over a division algebra, Messenger of Mathematics
vol. 57 (1928) pp. 1-6.
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(6) MaN) = (N — )N — @na) + -+ (A — ).

A particular factorization of m.(\) is needed in the proof of Theo-
rem 2. To obtain this, we establish the following lemma.

LEMMA D’. There exist elements o1, 012, + + * , 01, ER such that, if
-1 . .
@) Gip1 § = O30 — O; 41005 ¢10ij, h,i=12,+---,n—1,
where ai0=1 for all i, then m,(\) has the factorization (6) for

-1 .
(8) o; = 03 i{—1005 i—1, 7= 2, 3’ e, M.
That this is true can be seen inductively. Assume that oy, 012, 013,
.+, 01 k-1 €xist, £ <n, so that

ma(\) = a1 — @)X — ax-1) -+ - (N = @),
where @, oz, - + + , ay are given by (7) and (8). Let
a:(\) = Gt — )X —an) - N — @), i=1,2,--,k,
and
biA) = N — ar)N — ap1) + - (N — @), i=1,2,-++,k

From Lemma C, there must exist an element ¢zER such that
bi(ounaoy) #0. Then ouoo —a15%0, and by Lemma B’, a}[(ouaoi
—an)onao (T —an)~1] =0 or aj(omaoy’) =0. Now, as b:(\)
=b(\)(N —ou),and b} (curaoy)) #0, by(02sxoy’) %0 from LemmaB’. Thus
ouooy — ap#0, so that af[(oumaoy' — as)onaoy (caaoy' — az)~t]=0
or ay(omaoy’) =0. By induction, aj(saacz’) =0, 1=1, 2, ..., k+1,
so that we can select ax+1= 0511 K051 &

It is apparent that m.(rar~!) =0 for all nonzero r&ER. That all
roots of m.(\) are of this form is given by the following lemma.

LemMA E. If mq(B) =0, then B is a transform of a.

To prove this, let m.(\) = A—B)a(\). From Lemma C, there must
exist an element &R such that a"(rar—1) #0. Thus, in view of
Lemma B’, 8 =000, where o =a"(rar™?).

3. Principal theorems. If either « or v is in F, equation (1) becomes
trivial. Therefore we shall assume that both a and 7 are not in F.
Define »o=3, and, in general,

1’£=7iﬁ+7‘—lﬁa+"'+7ﬁa‘—l+ﬂair i=1v2:"'°
Then, if m(\) =Z§’_ou.~)\‘ is any polynomial in F[)\], any x which is a
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solution of (1) is also a solution® of

© xam(@) = ym(v)x + 3 uws

1m0
The discussion of (1) is divided quite naturally into two cases. The
first case, which is the easier of the two, is for oy not a transform of a.
The second case is for v a transform of «.

Case 1. As a and v are not transforms of each other, m.(y) 0 in
view of Lemma E. Thus, if we let m(\) of (9) be m.(\), we obtain

(10) x = — [ma() ]"7‘1( % mv.')

as the unique solution of (9). A substitution of this value of x in (1)
shows that it is also a solution of (1). As any solution of (1) is also a
solution of (9), (10) gives the unique solution of (1). We have thus
established the following theorem:

THEOREM 1. If o and vy are not transforms of each other, then
xe =vx+8
has a unique solution. If v is not zero, this solution is given by (10).

Case 2. The remaining considerations are for ¥ =rar—!. It is appar-
ent that the methods of Case 1 now fail, as m.(y) =0. Thus a new
approach must now be made.

Equation (1) can now be put in the form

xe = tar~x + B.
This equation has a solution if and only if the equation
T Ixa = ar™lx + 1B
has a solution. Therefore we need only consider an equation of the
form
(11) xa = ax + B.

The existence of solutions of this equation is given by the following
theorem.

THEOREM 2. Let o be an element of R not in F with minimum poly-

nomial me(\) =a(\)(\—a) and 8 be a nonzero element of R. Then the
equation

¢ See M. H. Ingraham and H. C. Trimble, On the matric equation TA=BT+-C,
Amer. J. Math. vol. 63 (1941) p. 13.
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xa =oax + B
kas a solution x in R if and only if a*(BeS~1) =0.

Proor. We shall first assume that there exists an element xER
such that (11) is satisfied. Then, as mq.(xax™!) =0 and xa=ax, we
have by Lemma B’ that a([xa—ax]a[xa—ax]-1)=0. Thus
a"(Bof~1) =0, and the first part of the theorem is established.

On the other hand, suppose that a"(Baf~t) =0. We shall now use
the particular factorization of m,(\) given in Lemma D’. Let the
polynomials b;;(\) be defined by

i) =AN—a)A—aic)) - AN—ayp), t2j7j=12,--+,m
Also, let 8=, and recursively,
(12) ﬁt‘ = ﬂi—la - aiﬁi—-ly i = 2' 3; cre, M,

There must exist an integer & such that b}, (Baf™1) #0, by 2(BaB~1) =0.
As in the proof of Lemma D/, the successive application of Lemma B’
yields

b’l'c+1 i+1(ﬂiaﬁi—l) = Oy i= 11 2» Y k.

The last application gives 85,1 xr1(BiBs ) =0, so that a1 =BeBs "
From (8), o41=0%41 #0541 x: thus there must exist an element
0rE R, such that By =041 10z Now let us assume that there exist ele-
ments §;&R, and an integer m such that

k
Bi= 2, oir1 %, i=mm-+1,---,k

i

Then it follows from (7), (8), and (12) that

k
Bm—10t — 0pfm—y = Z (a'mz'a - am“mi)air
Jumm

so that
2 3
(Bm—l - 2 6m155)a = am( m—1 — E am,-B,-).
Jramn e

As 0 =0 m—1007;" u_1, there must exist an element §,—1 E R, such that

k
Bu—1= D, omids
j=m—1

By induction,

k
B = D Toa;.

=1
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From (7), . .
B =2 a1 —a), o
ju=1 Jm=1

and thus, for any 6 ER,,

k
(13) X = Z 0'155,' + 5

i=1
is a solution of (11).

4. Special considerations. As a special case of Theorem 2, consider
R as the ring of quaternions over a formally real field F,
R=F(1,1,j, k). If we let @ denote the conjugate of @, & not in F, then

maN) = (A — a)(A — a).
Thus e(\) =(A—&), and Theorem 2 can be written in the following
form.

CoRrOLLARY 1. If R is a quaternion algebra over a formally real field
F and o is an element of R not in F, then

xoe=oax+B
has a solution if and only if
(14 Ba = aB.

Having obtained one solution of (11) from (13), say xi, then all
solutions are given by x1+90, 6ER,. It is observed that (11) cannot
have a solution if BER.,—as a"(BaB~!) =a"(a) in this case, and a"(a)
cannot be zero due to the separability of F. However, it is not true
that (11) always has a solution if 8 is not in R,. A simple example to
show this is as follows: let R be the ring of quaternions over a formally
real field F. For 8 =¢4j and ae =1, (14) is not satisfied, and thus (11)
can have no solution.

WasHINGTON, D. C,



