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DIVISION RING 
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1. Introduction and notation. The main purpose of this paper is to 
give necessary and sufficient conditions in order that the equation 

(1) x<* = TX + P 

have a solution x over an algebraic division ring. In case a solution 
exists, it is given explicitly if it is unique; otherwise, a method of ob­
taining one of the solutions is given. The application of the results 
to a quaternion algebra is discussed in the final section. 

Let R be a division ring algebraic over its separable1 center Ff and X 
a commutative indeterminate over R. Using the notation of Ore,2 a 
polynomial a(X)£i?[X] of degree n, 

(2) a(\) = an\
n + o^iX*-1 H h a0t 

will be called reduced if an=*l. The unique reduced polynomial 
m(X)£jF[X] of minimum degree for which m(a)=0 will be labelled 
raa(X). It is apparent that ma(X) is irreducible over F\\]. The ring of 
all elements of R which commute with a will be denoted by i?«. 

The substitution of an element of R for X in the polynomial (1) is 
not well defined, as X commutes with elements of R, whereas the ele­
ments of R do not all commute among themselves. However, unilat­
eral substitution is well defined. We shall use the symbol ar(P) to 
mean that /3 has been substituted for X on the right in (2), so that 

(3) a'(0) = anP
n + «n-nS»-1 + • • • + a0. 

Left substitution is defined similarly—as there is a complete duality 
between left and right substitution in our case, we shall discuss right 
substitution only. If ar(/3) = 0, /3 is called a right root of a(X). The nota­
tion a(X) \rb(k) is used to mean that a(X) is a right factor of &(X). As is 
well known, /3 is a right root of a(X) if and only if (X—/3) |ra(X). 

2. Preliminary lemmas. A division algorithm exists over i?[X]. 
The particular case of interest here is given by 

Presented to the Society, November 27, 1943; received by the editors September 
27, 1943. 

1 That is, no irreducible polynomial in F[\] has a multiple root in JR. 
2 O. Ore, Theory of noncommutative polynomials, Ann. of Math. vol. 34 (1933) 

pp. 481-508. 
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(4) J(X) - j(X)(X ~a)+ K«) . 

That is, the remainder on dividing a polynomial &(X) on the right by 
(X—a) is ôr(a). For any two elements a(X), 6(X) of 2?[X], there exists 
a unique reduced greatest common right divisor and a unique reduced 
least common left multiple. 

The following lemma is true for any ring3 i?. It is frequently proven 
for special cases. 

LEMMA A. If c(X) =a(X)ô(X), than br(a) = 0 implies cr(a) = 0. 

To prove this for a general ring, let a(X) «^J-o^AS b(X) =2Xo&X*: 
then 

n / m \ 

(5) e(X)-E«<( El8A')X'-

From this form, it is apparent that cr(a) =0 if br(a) = 0. 
In any polynomial ring which possesses a division algorithm, the 

following lemma holds. 

LEMMA B. If c(X)=a(X)6(X), then (X—a)\rc(\) if and only if 
(k-a)\ra(\)b'(a). 

From (4), c(X) =#(X)g(X)(X—a)+.a(X)ir(a), and the lemma follows. 
Over a division ring, this lemma can be put in the following form. 

LEMMA B'. If c(k)=a(k)b(X) and r = i r ( a )^0 , then a r ( r+ r - 1 )=0 
if and only if cr(a) = 0. 

This result was obtained by Wedderburn,4 arid later by Richardson6 

and, in a more general form, by Ore.2 Another result of WedderburnV 
is the following lemma. 

LEMMA C. If af(wr~1)==0 for all nonzero elements TÇZR, then 
m«(X)|a(X). 

The following fundamental theorem was obtained by Wedderburn4 

for division algebras and holds equally well for algebraic division rings. 

LEMMA D. If w«(X) is of degree n, then there exist elements a i (=a) , 
#2, • • • > oin in R such that 

8 See C. C. MacDuffee, Vectors and matrices (Carus Mathematical Monographs, 
No. 7), Mathematical Association of America, 1943, Theorem 36. 

4 J. H. M. Wedderburn, On division algebras, Trans. Amer. Math. Soc. vol. 22 
(1921) pp. 130-131. 

6 A. R. Richardson, Equations over a division algebra. Messenger of Mathematics 
vol. 57 (1928) pp. 1-6. 
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(6) ma(\) = (X — aw)(X — a*-i) • • • (X — ai). 

A particular factorization of m«(X) is needed in the proof of Theo­
rem 2. To obtain this, we establish the following lemma. 

LEMMA D ' . There exist elements <ru, aw, • • • , <rinÇzR such that, if 

(7) <7*+i j = ana — ai Glutei t-_i(Ti7, i, j = 1, 2, • • • , n — 1, 

where crio — 1 for all i, then wa(X) has the factorization (6) for 

(8) a{ = <rt- i-ia<ri »_i, i = 2, 3, • • • , n. 

That this is true can be seen inductively. Assume that <ru, 0-12, 0*13, 
• • • , <T\ ft-i exist, k <n, so that 

Wa(X) = «Ai+l(X)(X ~ aft)(X — «fc-l) • • • (X ~ «i), 

where ai, a2, • • • , cth are given by (7) and (8). Let 

0»(X) = 0JH-I(X)(X — a&)(X — a*_i) • • • (X — a»), i = 1, 2, • • • , k, 

and 

^(X) = (X — a/b)(X — ajfc-i) • • • (X — «0> i = 1, 2, • • • , i . 

From Lemma C, there must exist an element cr^Gi? such that 
bliaikOùcrû1)5*0. Then (rikaa^1— CL\T*0, and by Lemma B ' , ar

2[{(Tiyx<JÏ^ 
—advikavTtivikavTi—aiy^^O or al^acr^1) = 0. Now, as ôi(X) 
= &â(X)(X—ûJi),and&ï(a,ifcaa'ffc

1) 5^0, bK^hOtcr^t) T^O from LemmaB' . Thus 
VïkOLVn— 0127*0, so that ^ ( c ^ a o ^ 1 — a2)cr2A;a(72lb1(ö-2^a'Jfc

1-aj2)""1]=0 
or ^((Tsfcao-^1) = 0 . By induction, atfakcurù1) = 0, i = l, 2, • • • , £ + 1, 
so that we can select <Xk+i — ffk+i kcxvï+i t. 

I t is apparent that w ^ r a r 1 ) = 0 for all nonzero r(E:R. That all 
roots of ma(K) are of this form is given by the following lemma. 

LEMMA E. If m«(j3) = 0 , then /? is a transform of a. 

To prove this, let ma(K) = (X —/3)a(X). From Lemma C, there must 
exist an element T(E.R such that ar(raT"1)7i£0. Thus, in view of 
Lemma B ' , ft^aour"1, where o,=sar(raT~1). 

3. Principal theorems. If either a or y is in .P, equation (1) becomes 
trivial. Therefore we shall assume that both a and y are not in F. 
Define ^o=j8, and, in general, 

Vi = y*P + y^fia + • • • + y^-1 + &a\ i = 1, 2, • • • . 

Then, if m(X) « X X O M A * is any polynomial in -F[X], any x which is a 
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solution of (1) is also a solution6 of 
n 

(9) x<xm(a) = ym(y)x + ]C /**"<• 

The discussion of (1) is divided quite naturally into two cases. The 
first case, which is the easier of the two, is for y not a transform of a. 
The second case is for y a transform of a. 

Case 1. As a and y are not transforms of each other, ma(y)9^0 in 
view of Lemma E. Thus, if we let m(K) of (9) be ma(k), we obtain 

do) x- - k(7)]-yi(tw) 

as the unique solution of (9). A substitution of this value of x in (1) 
shows that it is also a solution of (1). As any solution of (1) is also a 
solution of (9), (10) gives the unique solution of (1). We have thus 
established the following theorem: 

THEOREM 1. If a and y are not transforms of each other', then 

x<* = yx + 0 

has a unique solution. If y is not zero, this solution is given by (10). 

Case 2. The remaining considerations are for y —rar"1. It is appar­
ent that the methods of Case 1 now fail, as ma(y)~0. Thus a new 
approach must now be made. 

Equation (1) can now be put in the form 

%OL = rar^x + ft. 

This equation has a solution if and only if the equation 

T~1X<X ^ «T~1X + T~XJ3 

has a solution. Therefore we need only consider an equation of the 
form 

(11) X« = «X + £• 

The existence of solutions of this equation is given by the following 
theorem. 

THEOREM 2. Let a be an element of R not in F with minimum poly-
nomial m«(\) =a(A)(X—a) and j3 be a nonzero element of R. Then the 
equation 

« See M. H. Ingraham and H. C. Trimble, On the mairie equation TA**BT+Ct 

Amer. J. Math. vol. 63 (1941) p. 13. 
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X<* = ax + P 

has a solution x in R if and only if ar(fiaf$~'1) = 0. 

PROOF. We shall first assume that there exists an element xGi? 
such that (11) is satisfied. Then, as rna(x<xX~l) —0 and xa^<*X> we 
have by Lemma B ' that ar([x«—ajx]<*[x<2"~"ax]"1) = 0 . Thus 
ar(fiafi~l) = 0, and the first part of the theorem is established. 

On the other hand, suppose that ar((3al3~l) = 0. We shall now use 
the particular factorization of ma(K) given in Lemma D ' . Let the 
polynomials &»y(X) be defined by 

#*-jQ0 = (X — oii)(\ - at-_i) • • • (X - a/), i ^ j = 1, 2, • • • , n. 

Also, let Pi~P, and recursively, 

(12) pi = fa-ia - onft-i, i = 2, 3, • • • , nf 

There must exist an integer k such that br^{Pap~l) T^O,6£+12(@<xP~1) = 0. 
As in the proof of Lemma D ' , the successive application of Lemma B ' 
yields 

bl+i t+iGM^r ) = 0, i = 1, 2, • • • , k. 

The last application gives br
k+1 k+iiPk^P^1) = 0, so that c^+i^Aa/îï"1* 

From (8), ajfc+i=a&+i fcû^r+i *: thus there must exist an element 
faCzRa such that fik — Ck+i A- Now let us assume that there exist ele­
ments 5y£2?a and an integer m such that 

k 

Pi « Z) ori+i ,-$ƒ, i = m, W + 1, • • • , k. 
i-i 

Then it follows from (7), (8), and (12) tha t 

k 

fim-lOl — ampm-l = 2 J (<Tmi<X — Otm<Tmj)8jf 

so that 

jmmm / \ j«*m / 

As am*=<rm fn-iao1^1
 w.x, there must exist an element ôw_iEi?« such that 

k 

Pm-l = 2-f Gmfiv 
/«am—1 

By induction, 
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From (7), 
k k 

a- i j - i 

and thus, for any 5£i?«, 
k 

(13) X = E *ifii + * 

is a solution of (11). 

4. Special considerations. As a special case of Theorem 2, consider 
R as the ring of quaternions over a formally real field F, 
R = 7 (̂1, ifjf k). If we let â denote the conjugate of ce, a not in -F, then 

w«(X) =! (X — a)(X — a). 

Thus a(K) = (X — â), and Theorem 2 can be written in the following 
form. 

COROLLARY I. If Ris a quaternion algebra over a formally real field 
F and a is an element of R not in F, then 

xoi = ax + P 

has a solution if and only if 

(14) fia = âfi. 

Having obtained one solution of (11) from (13), say xi> then all 
solutions are given by Xi+5, 5£i?a . It is observed that (11) cannot 
have a solution if /3£i?«—as ar{fiafi-x) =ar(a) in this case, and ar{a) 
cannot be zero due to the separability of F. However, it is not true 
that (11) always has a solution if fi is not in Ra, A simple example to 
show this is as follows: let R be the ring of quaternions over a formally 
real field F. For fi = i+j and a=*i, (14) is not satisfied, and thus (11) 
can have no solution. 

WASHINGTON, D. C. 


