ON THE EQUATION $\chi \alpha = \gamma \chi + \beta$ OVER AN ALGEBRAIC DIVISION RING

R. E. JOHNSON

1. Introduction and notation. The main purpose of this paper is to give necessary and sufficient conditions in order that the equation

$$\chi \alpha = \gamma \chi + \beta$$

have a solution χ over an algebraic division ring. In case a solution exists, it is given explicitly if it is unique; otherwise, a method of obtaining one of the solutions is given. The application of the results to a quaternion algebra is discussed in the final section.

Let R be a division ring algebraic over its separable center F, and λ a commutative indeterminate over R. Using the notation of Ore, a polynomial $a(\lambda) \in R[\lambda]$ of degree n,

(2)
$$a(\lambda) = \alpha_n \lambda^n + \alpha_{n-1} \lambda^{n-1} + \cdots + \alpha_0$$

will be called reduced if $\alpha_n = 1$. The unique reduced polynomial $m(\lambda) \in F[\lambda]$ of minimum degree for which $m(\alpha) = 0$ will be labelled $m_{\alpha}(\lambda)$. It is apparent that $m_{\alpha}(\lambda)$ is irreducible over $F[\lambda]$. The ring of all elements of R which commute with α will be denoted by R_{α} .

The substitution of an element of R for λ in the polynomial (1) is not well defined, as λ commutes with elements of R, whereas the elements of R do not all commute among themselves. However, unilateral substitution is well defined. We shall use the symbol $a^r(\beta)$ to mean that β has been substituted for λ on the right in (2), so that

(3)
$$a^{r}(\beta) = \alpha_{n}\beta^{n} + \alpha_{n-1}\beta^{n-1} + \cdots + \alpha_{0}.$$

Left substitution is defined similarly—as there is a complete duality between left and right substitution in our case, we shall discuss right substitution only. If $a^r(\beta) = 0$, β is called a right root of $a(\lambda)$. The notation $a(\lambda) \mid b(\lambda)$ is used to mean that $a(\lambda)$ is a right factor of $b(\lambda)$. As is well known, β is a right root of $a(\lambda)$ if and only if $a(\lambda) \mid a(\lambda) \mid b(\lambda) \mid b$

2. Preliminary lemmas. A division algorithm exists over $R[\lambda]$. The particular case of interest here is given by

Presented to the Society, November 27, 1943; received by the editors September 27, 1943.

¹ That is, no irreducible polynomial in $F[\lambda]$ has a multiple root in R.

² O. Ore, Theory of noncommutative polynomials, Ann. of Math. vol. 34 (1933) pp. 481-508.

(4)
$$b(\lambda) = q(\lambda)(\lambda - \alpha) + b^{r}(\alpha).$$

That is, the remainder on dividing a polynomial $b(\lambda)$ on the right by $(\lambda - \alpha)$ is $b^r(\alpha)$. For any two elements $a(\lambda)$, $b(\lambda)$ of $R[\lambda]$, there exists a unique reduced greatest common right divisor and a unique reduced least common left multiple.

The following lemma is true for any ring³ R. It is frequently proven for special cases.

LEMMA A. If
$$c(\lambda) = a(\lambda)b(\lambda)$$
, than $b^{r}(\alpha) = 0$ implies $c^{r}(\alpha) = 0$.

To prove this for a general ring, let $a(\lambda) = \sum_{i=0}^{n} \alpha_i \lambda^i$, $b(\lambda) = \sum_{i=0}^{m} \beta_i \lambda^i$: then

(5)
$$c(\lambda) = \sum_{i=0}^{n} \alpha_{i} \left(\sum_{j=0}^{m} \beta_{j} \lambda^{j} \right) \lambda^{i}.$$

From this form, it is apparent that $c^r(\alpha) = 0$ if $b^r(\alpha) = 0$.

In any polynomial ring which possesses a division algorithm, the following lemma holds.

LEMMA B. If $c(\lambda) = a(\lambda)b(\lambda)$, then $(\lambda - \alpha)|^r c(\lambda)$ if and only if $(\lambda - \alpha)|^r a(\lambda)b^r(\alpha)$.

From (4), $c(\lambda) = a(\lambda)q(\lambda)(\lambda - \alpha) + a(\lambda)b^r(\alpha)$, and the lemma follows. Over a division ring, this lemma can be put in the following form.

LEMMA B'. If $c(\lambda) = a(\lambda)b(\lambda)$ and $\tau = b^{\tau}(\alpha) \neq 0$, then $a^{\tau}(\tau + \tau^{-1}) = 0$ if and only if $c^{\tau}(\alpha) = 0$.

This result was obtained by Wedderburn,⁴ and later by Richardson⁵ and, in a more general form, by Ore.² Another result of Wedderburn's⁴ is the following lemma.

LEMMA C. If $a^{\tau}(\tau \alpha \tau^{-1}) = 0$ for all nonzero elements $\tau \in \mathbb{R}$, then $m_{\alpha}(\lambda) \mid a(\lambda)$.

The following fundamental theorem was obtained by Wedderburn⁴ for division algebras and holds equally well for algebraic division rings.

LEMMA D. If $m_{\alpha}(\lambda)$ is of degree n, then there exist elements $\alpha_1(=\alpha)$, $\alpha_2, \dots, \alpha_n$ in R such that

⁸ See C. C. MacDuffee, *Vectors and matrices* (Carus Mathematical Monographs, No. 7), Mathematical Association of America, 1943, Theorem 36.

⁴ J. H. M. Wedderburn, On division algebras, Trans. Amer. Math. Soc. vol. 22 (1921) pp. 130-131.

⁵ A. R. Richardson, *Equations over a division algebra*, Messenger of Mathematics vol. 57 (1928) pp. 1-6.

(6)
$$m_{\alpha}(\lambda) = (\lambda - \alpha_n)(\lambda - \alpha_{n-1}) \cdot \cdot \cdot (\lambda - \alpha_1).$$

A particular factorization of $m_{\alpha}(\lambda)$ is needed in the proof of Theorem 2. To obtain this, we establish the following lemma.

LEMMA D'. There exist elements $\sigma_{11}, \sigma_{12}, \cdots, \sigma_{1n} \in \mathbb{R}$ such that, if

(7)
$$\sigma_{i+1 j} = \sigma_{ij}\alpha - \sigma_{i i-1}\alpha\sigma_{i i-1}^{-1}\sigma_{ij}, \qquad i, j = 1, 2, \cdots, n-1,$$

where $\sigma_{i0} = 1$ for all i, then $m_{\alpha}(\lambda)$ has the factorization (6) for

(8)
$$\alpha_i = \sigma_{i i-1} \alpha \sigma_{i i-1}^{-1}, \qquad i = 2, 3, \cdots, n.$$

That this is true can be seen inductively. Assume that σ_{11} , σ_{12} , σ_{13} , \cdots , $\sigma_{1 \ k-1}$ exist, k < n, so that

$$m_{\alpha}(\lambda) = a_{k+1}(\lambda)(\lambda - \alpha_k)(\lambda - \alpha_{k-1}) \cdot \cdot \cdot (\lambda - \alpha_1),$$

where $\alpha_1, \alpha_2, \cdots, \alpha_k$ are given by (7) and (8). Let

$$a_i(\lambda) = a_{k+1}(\lambda)(\lambda - \alpha_k)(\lambda - \alpha_{k-1}) \cdot \cdot \cdot (\lambda - \alpha_i), \quad i = 1, 2, \cdots, k,$$

and

$$b_i(\lambda) = (\lambda - \alpha_k)(\lambda - \alpha_{k-1}) \cdot \cdot \cdot (\lambda - \alpha_i), \qquad i = 1, 2, \dots, k.$$

From Lemma C, there must exist an element $\sigma_{1k} \in R$ such that $b_1^r(\sigma_{1k}\alpha\sigma_{1k}^{-1}) \neq 0$. Then $\sigma_{1k}\alpha\sigma_{1k}^{-1} - \alpha_1 \neq 0$, and by Lemma B', $a_2^r[(\sigma_{1k}\alpha\sigma_{1k}^{-1} - \alpha_1)\sigma_{1k}\alpha\sigma_{1k}^{-1}(\sigma_{1k}\alpha\sigma_{1k}^{-1} - \alpha_1)^{-1}] = 0$ or $a_2^r(\sigma_{2k}\alpha\sigma_{2k}^{-1}) = 0$. Now, as $b_1(\lambda) = b_2(\lambda)(\lambda - \alpha_1)$, and $b_1^r(\sigma_{1k}\alpha\sigma_{1k}^{-1}) \neq 0$, $b_2^r(\sigma_{2k}\alpha\sigma_{2k}^{-1}) \neq 0$ from Lemma B'. Thus $\sigma_{2k}\alpha\sigma_{2k}^{-1} - \alpha_2 \neq 0$, so that $a_3^r[(\sigma_{2k}\alpha\sigma_{2k}^{-1} - \alpha_2)\sigma_{2k}\alpha\sigma_{2k}^{-1}(\sigma_{2k}\alpha\sigma_{2k}^{-1} - \alpha_2)^{-1}] = 0$ or $a_3^r(\sigma_{3k}\alpha\sigma_{3k}^{-1}) = 0$. By induction, $a_4^r(\sigma_{ik}\alpha\sigma_{ik}^{-1}) = 0$, $i = 1, 2, \dots, k+1$, so that we can select $\alpha_{k+1} = \sigma_{k+1} k\alpha\sigma_{k+1}^{-1}$.

It is apparent that $m_{\alpha}(\tau \alpha \tau^{-1}) = 0$ for all nonzero $\tau \in \mathbb{R}$. That all roots of $m_{\alpha}(\lambda)$ are of this form is given by the following lemma.

LEMMA E. If $m_{\alpha}(\beta) = 0$, then β is a transform of α .

To prove this, let $m_{\alpha}(\lambda) = (\lambda - \beta)a(\lambda)$. From Lemma C, there must exist an element $\tau \in \mathbb{R}$ such that $a^r(\tau \alpha \tau^{-1}) \neq 0$. Thus, in view of Lemma B', $\beta = \sigma \alpha \sigma^{-1}$, where $\sigma = a^r(\tau \alpha \tau^{-1})$.

3. Principal theorems. If either α or γ is in F, equation (1) becomes trivial. Therefore we shall assume that both α and γ are not in F. Define $\nu_0 = \beta$, and, in general,

$$\nu_i = \gamma^i \beta + \gamma^{i-1} \beta \alpha + \cdots + \gamma \beta \alpha^{i-1} + \beta \alpha^i, \qquad i = 1, 2, \cdots.$$

Then, if $m(\lambda) = \sum_{i=0}^{n} \mu_i \lambda^i$ is any polynomial in $F[\lambda]$, any χ which is a

solution of (1) is also a solution of

(9)
$$\chi \alpha m(\alpha) = \gamma m(\gamma) \chi + \sum_{i=0}^{n} \mu_{i} \nu_{i}.$$

The discussion of (1) is divided quite naturally into two cases. The first case, which is the easier of the two, is for γ not a transform of α . The second case is for γ a transform of α .

Case 1. As α and γ are not transforms of each other, $m_{\alpha}(\gamma) \neq 0$ in view of Lemma E. Thus, if we let $m(\lambda)$ of (9) be $m_{\alpha}(\lambda)$, we obtain

(10)
$$\chi = -\left[m_{\alpha}(\gamma)\right]^{-1}\gamma^{-1}\left(\sum_{i=0}^{n}\mu_{i}\nu_{i}\right)$$

as the unique solution of (9). A substitution of this value of χ in (1) shows that it is also a solution of (1). As any solution of (1) is also a solution of (9), (10) gives the unique solution of (1). We have thus established the following theorem:

THEOREM 1. If α and γ are not transforms of each other, then

$$\chi \alpha = \gamma \chi + \beta$$

has a unique solution. If γ is not zero, this solution is given by (10).

Case 2. The remaining considerations are for $\gamma = \tau \alpha \tau^{-1}$. It is apparent that the methods of Case 1 now fail, as $m_{\alpha}(\gamma) = 0$. Thus a new approach must now be made.

Equation (1) can now be put in the form

$$\chi \alpha = \tau \alpha \tau^{-1} \chi + \beta.$$

This equation has a solution if and only if the equation

$$\tau^{-1}\chi\alpha = \alpha\tau^{-1}\chi + \tau^{-1}\beta$$

has a solution. Therefore we need only consider an equation of the form

(11)
$$\chi \alpha = \alpha \chi + \beta.$$

The existence of solutions of this equation is given by the following theorem.

THEOREM 2. Let α be an element of R not in F with minimum polynomial $m_{\alpha}(\lambda) = a(\lambda)(\lambda - \alpha)$ and β be a nonzero element of R. Then the equation

⁶ See M. H. Ingraham and H. C. Trimble, On the matric equation TA = BT + C, Amer. J. Math. vol. 63 (1941) p. 13.

has a solution χ in R if and only if $a^r(\beta \alpha \beta^{-1}) = 0$.

PROOF. We shall first assume that there exists an element $\chi \in R$ such that (11) is satisfied. Then, as $m_{\alpha}(\chi \alpha \chi^{-1}) = 0$ and $\chi \alpha \neq \alpha \chi$, we have by Lemma B' that $a^{r}([\chi \alpha - \alpha \chi]\alpha[\chi \alpha - \alpha \chi]^{-1}) = 0$. Thus $a^{r}(\beta \alpha \beta^{-1}) = 0$, and the first part of the theorem is established.

On the other hand, suppose that $a^r(\beta\alpha\beta^{-1}) = 0$. We shall now use the particular factorization of $m_{\alpha}(\lambda)$ given in Lemma D'. Let the polynomials $b_{ij}(\lambda)$ be defined by

$$b_{ij}(\lambda) = (\lambda - \alpha_i)(\lambda - \alpha_{i-1}) \cdot \cdot \cdot (\lambda - \alpha_j), \quad i \geq j = 1, 2, \cdots, n.$$

Also, let $\beta_1 = \beta$, and recursively,

(12)
$$\beta_i = \beta_{i-1}\alpha - \alpha_i\beta_{i-1}, \qquad i = 2, 3, \cdots, n.$$

There must exist an integer k such that $b_{k2}^r(\beta\alpha\beta^{-1}) \neq 0$, $b_{k+12}^r(\beta\alpha\beta^{-1}) = 0$. As in the proof of Lemma D', the successive application of Lemma B' yields

$$b_{k+1}^r {}_{i+1}(\beta_i \alpha \beta_i^{-1}) = 0, \qquad i = 1, 2, \cdots, k.$$

The last application gives $b_{k+1}^r {}_{k+1}(\beta_k \alpha \beta_k^{-1}) = 0$, so that $\alpha_{k+1} = \beta_k \alpha \beta_k^{-1}$. From (8), $\alpha_{k+1} = \sigma_{k+1} {}_k \alpha \sigma_{k+1}^{-1} {}_k$: thus there must exist an element $\delta_k \in R_\alpha$ such that $\beta_k = \sigma_{k+1} {}_k \delta_k$. Now let us assume that there exist elements $\delta_j \in R_\alpha$ and an integer m such that

$$\beta_i = \sum_{j=i}^k \sigma_{i+1} \,_{j} \delta_{j}, \qquad i = m, m+1, \cdots, k.$$

Then it follows from (7), (8), and (12) that

$$\beta_{m-1}\alpha - \alpha_m\beta_{m-1} = \sum_{i=1}^k (\sigma_{mi}\alpha - \alpha_m\sigma_{mi})\delta_i,$$

so that

$$\left(\beta_{m-1} - \sum_{j=m}^{k} \sigma_{mj} \delta_{j}\right) \alpha = \alpha_{m} \left(\beta_{m-1} - \sum_{j=m}^{k} \sigma_{mj} \delta_{j}\right).$$

As $\alpha_m = \sigma_{m-1} \alpha \sigma_{m-1}^{-1}$, there must exist an element $\delta_{m-1} \in R_\alpha$ such that

$$\beta_{m-1} = \sum_{j=m-1}^k \sigma_{mj} \delta_j.$$

By induction,

$$\beta = \sum_{j=1}^k \sigma_{2j} \delta_j.$$

From (7),

$$\beta = \sum_{j=1}^{k} \sigma_{1j} \delta_{j} \alpha - \alpha \sum_{j=1}^{k} \sigma_{1j} \delta_{j}$$

and thus, for any $\delta \in R_{\alpha}$,

(13)
$$\chi = \sum_{i=1}^{k} \sigma_{1i} \delta_i + \delta$$

is a solution of (11).

4. Special considerations. As a special case of Theorem 2, consider R as the ring of quaternions over a formally real field F, R = F(1, i, j, k). If we let $\bar{\alpha}$ denote the conjugate of α , α not in F, then

$$m_{\alpha}(\lambda) = (\lambda - \bar{\alpha})(\lambda - \alpha).$$

Thus $a(\lambda) = (\lambda - \bar{a})$, and Theorem 2 can be written in the following form.

COROLLARY 1. If R is a quaternion algebra over a formally real field F and α is an element of R not in F, then

$$\chi \alpha = \alpha \chi + \beta$$

has a solution if and only if

$$\beta \alpha = \bar{\alpha} \beta.$$

Having obtained one solution of (11) from (13), say χ_1 , then all solutions are given by $\chi_1+\delta$, $\delta \in R_{\alpha}$. It is observed that (11) cannot have a solution if $\beta \in R_{\alpha}$ —as $a^r(\beta \alpha \beta^{-1}) = a^r(\alpha)$ in this case, and $a^r(\alpha)$ cannot be zero due to the separability of F. However, it is not true that (11) always has a solution if β is not in R_{α} . A simple example to show this is as follows: let R be the ring of quaternions over a formally real field F. For $\beta = i+j$ and $\alpha = i$, (14) is not satisfied, and thus (11) can have no solution.

WASHINGTON, D. C.