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1. Introduction. In a number of recent papers, Bergman1 has de
veloped the theory of operational methods for transforming analytic 
functions of a complex variable into solutions of the linear partial 
differential equation 

(1.1) L(U) = Uzi + a(z, z)U, + b(z, z)Ui + c(z, z)U = 0, 

where z=x+iy, z=x—iy, 

1 /dU dU\ 1 /dU dU\ 
*7, = —I i ), U, - — ( + * J, 

2 \dx dy/ 2\dx dy J 
1 /d*U diU\ 

4 \ dx* dy2 ) 
and where the coefficients a(z, z), b{z, z) and c(z, z) are analytic func
tions of both variables z and z. The equation (1.1) is equivalent to the 
system of two real equations 

AU^ + 2Aüf + 2BU™ + 2Cuf + 2DuT 

+ AcxU
W - ÏCiU™ = 0, 

AUW - 2CU? - 2DU™ + 2AV? + UU? 

+ 4c2U + 4ciU = 0, 

where 

U=U™+iU™; 2A = (a+â) + (b+h); 2JB-f[(tf-a)-(8-J)]; 

c=a+ic2; 2D=(a+â)-(b+h); 2C=*i[(a-a) + (b-h)]. 

Presented to the Society, November 26, 1943; received by the editors November 
13, 1943. This paper was prepared while the author was a fellow under the Program 
of Advanced Instruction in Mechanics at Brown University. 

1 S. Bergman, (a) Zur Theorie der Funktionen, die eine linear e partielle Differential-
gleichung befriedigen, Rec. Math. (Mat. Sbornik) N.S. vol. 44 (1937) pp. 1169-1198; 
(b) The approximation of functions satisfying a linear partial differential equation, 
Duke Math. J. vol. 6 (1940) pp. 537-561; (c) Linear operators in the theory of partial 
differential equations, Trans. Amer. Math. Soc. vol. 53 (1943) pp. 130-155; (d) On 
the solutions of partial differential equations of the fourth order, to appear later. 

208 



A RECURRENCE FORMULA 209 

Furthermore, if a = 5 and c is real, then C=D«c2
!=0, and the two 

differential equations become real and identical. 
For equations (1.1), Bergman proved the existence of two functions 

£1(0, 2, t) and £2(2, 2, /), called by him "generating functions of the 
first kind,"2 with the following properties: 

(1) They have the forms 

£i(z, z, t) = exp 1 — I 0(2, z)dz 1 [l + zztEi(z, z, t)], 

E2(z, z, t) = exp f — I b(zy z)dz J [l + zztEi{z> z, /)], 

where each Ej?(z, z, t) has continuous first partial derivatives in z, z 
and /for |/ | ^ 1 and for z and z within a certain four-dimensional 
region. 

(2) The classes C(£i) and C(E2) of functions Ui(z, z) and U*(z, z) 
defined by the formulas 

(1.2) Ui(z, z) = ƒ Ex(z9 z, t)f(z(l - t*)/2)dt/{\ - t*yt\ 

(1.3) U2(z, 2) = ƒ £,(*, z, f)g(z(l - t*)/2)dt/(\ - /2)1/2, 

where/(f) and g(f) are arbitrary analytic functions of f, form subsets 
of solutions of (1.1). 

(3) Every solution U(z, z) of (1.1) may be written in the form 

U(z,z) = J7i(M) + ff*(M), 

with/(J") and g(f) suitably chosen analytic functions. 
As was proved by Bergman, to many theorems about analytic func

tions of a complex variable correspond analogous theorems about 
functions belonging to classes C(E) generated by functions E of the 
first kind. In particular, if we define as "basic solutions" those corre
sponding to f(z)=zp, that is 

(1.4) «,(«, z) = ƒ E(z, z, t) [s(l - P)/2]Ht/{\ - P)~ll\ 

then every function U of class C(E) which is regular in \z\ ^r may 

* Generating functions which are considered as not of the first kind are those 
failing to satisfy property (1). When E is a generating function not of the first kind, 
the integration in (1.2) and (1.3) must be taken along a rectifiable curve joining the 
points /= ±1, but not passing through £=0. 
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be expanded in a series U=*%2<xpup which is uniformly and absolutely 
convergent in \z\ ^f. 

For example, in the case of the equation 

(1.5) AU+ £7 = 0, 

E(z, z, t) =eitr
t where z~reie and thus r = (zz)li2. Because of the well 

known formula for the Bessel function of the first kind 

Jp(r) - (2/ir)(l/r(f + 1/2)) ƒ V«(r/2)*(1 - P)r-U*dt, 

the basic solutions are 

(1.6) uP(rf 0) = (*"*/2)T(p + l/2)«*"/,(r). 

But for (1.5), successive terms in the expansion U==%2apup can be 
computed from earlier terms by the use of some recurrence relation 
satisfied by the Bessel's functions, as for example the relation 

(1.7) j ; (r) - (p/r)JP(r) - J^r). 

It would likewise be of practical value in the case of other differential 
equations L(£7)=0 to determine what recurrence relations, if any, 
are satisfied by the basic solutions up(r, 0). 

In the present note, recurrence formulas connecting the basic solu
tions up(r, 0) are found in the case of differential equations, L(U) =0 
for which at least one of the corresponding "generating functions" 
E(z, z, t) is of the form E(z, z, t) =exp/(r, 0, t) where/(r, 0, t) is a poly
nomial in / containing either only even powers of t or only odd powers 
of /. Obviously, the equation (1.5) is an example of such an equation. 
Other examples can be found by requiring the coefficients a, b and 
c in the equation L(U) =0 to satisfy certain differential relations.8 

Our first main result may be stated as follows: 

THEOREM 1. Let L(U)=0bea partial differential equation of the type 
(1.1) for which there exists a generating function having one of the forms: 

(I) E(z, z, t) = exp P(r, 0, t), 

(II) E(z, z, t) = exp tP{r, 0, t), 

where P(r, 0, t)—ao(r, 0)+ai(f, 6)t2+ • • • +an(r, d)t2n, and where the 
coefficients aj(r, 0) are of class C' in r and 0. Let uP(r, 0) be the corre
sponding t(basic solutions" çf equation L(C7)=0 and let 

8 See reference in footnote la, pp. 1194-1195, and also p. 158 of the following ar
ticle: K. L. Nielsen and B. P. Ramsay, On particular solutions of linear partial differ» 
ential equations, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 156-162. 
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(i.8) «*.«-<-»•[£<*.£](£)•. 

(1.9) &(r, 6) - (- 1)« [ £ (2/ + l)C,itaf] ( ^ J . 

77œ», i / £ has form (I), 

(1.10) — = — up + 2L, «i^p+j ; 
ôr r ,-.o 

whereas, if E has form (II), 

d w p ƒ> 2 * oLjPkUj+k+p+i, 
(1.11) = —Up H >, 

or r re" ,,*.<> 2/ + 2 ^ + 1 
The above theorem will be derived as an immediate consequence 

of two lemmas that are given in the next section. In the third section 
the theorem will be applied to a few specific equations of form (1.1). 

2. Two lemmas. First we shall derive a result for polynomials 
P(r, 0, t) involving only even powers of t. 

LEMMA 1. Let 

P(r, 6, t) = a0(r, e) + <n(r, B)P + • • • + an(r, d)t*n, 

where the aj(r, 0) are functions of class C' in r and 0. Then the function 

(2.1) up(r98) = f ep<''M)(l - p)^^{rei9/2)Ht 

satisfies the recurrence formula 

(2.2) dup/dr = [p/r + Pr(r, 0, (1 - T)W)]uPf 

where T is the operator such that, T acting k times upon up1 

(2.3) Tkup~ (2/rei6)kUp+k 

fork = 0, 1, • • • . 

PROOF. From (2.1) we obtain by differentiating with respect to r: 

(2.4) 

dup p rl rdao doi 
dr r J _ i Lor dr + 

tin (1 - J2)*-1'2 f J it. 
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To evaluate the latter integral, let us note that 

= f [1 - (1 - *2)]V(1 - P)>~li\rea/2)'it 

m /» 1 

m 

ft-0 

Hence, 

(2.5) I t2mep(l - t*)*-w(fe<9/2)vdt = (1 - r)m«,. 

Substituting now from (2.5) into (2.4), we find 

dun p dao dai dan 
-1 = JL Up + _ Up + —- (1 - r ) « , + • • • + — (1 - T)n«p 
or r or or or 

= [p/r + Pr(r,0,.(l- r ) 1 / a )K , 

as was to be proved. 
The corresponding result for a polynomial that involves only odd 

powers of t may be stated as follows. 

LEMMA 2. Let Q(r, 6, t)=a0(r, 6)t+a1(r, 6)tz+ • • • +an(r, 6)t2n+l 

=tP(r, 0, /), where the aj(r, 0) are functians of class C' in r and 0. Then 
the f unctions uP(r, 0) defined by (2.1) satisfy the recurrence formula: 

aup/dr = (p/r)up + {Qt(r, 0, (1 - T)"2) 

(2.6) rTl12 ) 

J t**Pr(r, e, (i - tyi*)dt\ r-*+u*u,, 
where T is the operator defined by equation (2.3). 

PROOF. In place of (2.4), we now have 

dup p r1 fdao dai 

-^ = ^Up+\ M t+—«» + ... 
or T J — i L or or 

(2.7) 
dan 1 /reid\p 

In order to evaluate the latter integral, let us first integrate by parts: 
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f <e«(l - P)*-u*(reu/2)Pdt 
- 1 i r1 

=• I e«(l - ^)*-1'2(reiV2)^(l - t2) 
2 •/—i 

= (1/(2/. + 1)) f eQ(dQ/dt)(l - f)^l\reiy2)Pdt 

= (1/(2/. + 1)) ƒ e«[a0 + 3<M2 + • • • 

+ (2« + l)a„<2"](l - tiy+li\reil>/2ydt. 
Hence, by equation (2.5), 

f fe<»(i - p)*~lli(rtP/2)'to - (i/(2* + i))<M'. ö, (l - Tyi*)Tup 

= ç>«(r, e, (i - r)1 '2) ( f *•»<») T-p+^up. 

Let us then assume that the formula 

f tim+le9{\ - t*)v-li\reill/2ydt 

(2'8) "' /r- \ 
has already been verified for w = 0, 1, 2, • • • , iV and proceed to verify 
the formula for tn = N+l, as follows. 

i: pK+iifl(l - tiy+1i\rei9/2ydt 

= Ö«(r, 0, (1 - J)1'2) j | " f *2*(1 - t2)Ndt~] T-p+Wup 

- J f *2»+2(l - P)»dt1 (2Ae ie)r_J>_1/2Mp+i} 

= Q,(r, 0, (1 - T)1'2) ( f P*{\ - t^+^tJT-p^^Up. 
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Thus, formula (2.8) has been established by mathematical induction. 
We now substitute from formula (2.8) into expression (2.7), thus 

obtaining 

dup p / 

dr r \ 

J'2*'2 (daQ dax dan ) \ 

pp\—+ ( l - / 2 ) + • • • + ( l - / 2 ) 4 ) T-p+^Up 
o I dr dr dr ) / 

- y up+Q<(r, 0, (1 - T)1'2) | ƒ t**Pr(r, 0, (1 -*) 1 / 2 )1 T~*+U*uPf 

as was to be proved. 
PROOF OF THEOREM 1. Formula (2.2) may be reduced to formula 

(1.10) if, using (1.8) and (2.3), we set 

» da J- » /rei9\q 

Pr(r, 0, (1 - T)^)up - £ 'T1 (1 - W*p - E « « ( - 7 - J r % 
j«0 Of fl-0 \ * / 

To reduce formula (2.6) to (1.11), let us set 

Qt(r, 0, (1 - TT/2) - £ (2j + l)a,(l - 20' - E f t ^ Y 1 * 

with the j8y defined as in formula (1.9). Since 
n /rei6\j 

Pr(r, 0, (1 - ^V'2) = 2>*( — )'". 
j-o \ 2 / 

we may write the second term of the left side of (2.6) as 

S*(T)H/. -"' ,S-(T)H , W W V ' 

,Zo 2^ + 2/ + 1 \ 2 / r«" , £o 2£ + 2; + 1 

Thus the proof of our main theorem is completed. 

3. Examples. Let us first verify that the recurrence relation (2.6) 
is a generalization of that for Bessel's functions as given in formula 
(1.7). Here Q(r, 0, t)=rti and thus (2.6) becomes 
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r pTH% -i 
dup/dr - (p/r)u9 + ri\ I t2pidt T-**ll*u9 

(3.1) L J o J 
- (*/')«, - (2^<#/(2# + DK+i-

If now we set 

up = (7rU*/2)T(p + 1/2)JPW, 

Up+1 - (x1/2/2)(i> + l/2)r(p + 1/2)Jp+tMW, 

formula (3.1) reduces at once to formula (1.7). 
As our second example, let us consider the differential equation 

JL(Z7)=0 in which the expression F~c—ab—azf£0 satisfies the two 
equations 

(3.2) Fz = 0, 2F - az + h = 0. 

As shown by Bergman,4 one of the possible corresponding generating 
functions is E(z, z, t) =exp P(r, 0, t) =exp (ao+#i*2)> where 

(3.3) 0o = — I adz, a\ = 2z I Fdz. 
J o «Jo 

According to our theorem, the recurrence relation satisfied by the 
basic solutions is in this case 

(3.4) (dup/dr) = (p/r)up + a0up + ai«p+i. 

where 

ao = döo/dr + dax/dr = - <wr" + 2rF + 2ei0 f Fdz, 
J o 

«i = - (2/re«)(dai/dr) = - 4*-«*F - (4/r) f F<fë. 

A partial differential equation which satisfies conditions (3.2) is 

(3.5) U*- 2(z + z)U* + U~0. 

Here F(z) = 1, a0 = 0, ai = 2r2, and therefore in the recurrence relation 
(3.4) of0=4r, and ai^Se"". Setting U=U(1)+iUm, we see that 
equation (3.5) is equivalent to the system of two partial differential 
equations 

A 7 T ( D (1) „ ( 2 ) (1) 

A _ . ( 2 ) __(2) (1) (2) 

Ai7 — &xUx — 8ücï7y + 4Z7 = 0 , 

* See p. 1194, reference in footnote la . 
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and that recurrence relation (3.4) for up — uv
x)+iup

2) is in this case 
equivalent to the system of recurrence relations 

dup /dr = (p/r)up + 4rup — 8up+i cos 0 — 8up+i sin 0, 

^ <2> / ^ / / N <2> , „ <2> o <2> /, , o <l> • n 

dup /or = (p/r)Up + wup — 8wp+i cos 0 + oup+i sm 0. 

Other examples of partial differential equations L(U)=0 for which 
log E is an even or odd polynomial in t may be found in the articles 
referred to in footnotes l a and 3. For these differential equations also, 
a recurrence relation may be derived by use of Lemmas 1 and 2. 

4. Generalization. By means of formulas (2.5) and (2.8), the theo
rem given in the introduction may be extended to partial differential 
equations of type (1.1) for which a generating function exists that has 
the form E = g exp ƒ with both ƒ and g suitably chosen polynomials 
in t. The generalization may be stated as follows. 

THEOREM 2. Let L(U)=0 be a partial differential equation of type 
(1.1) for which a generating f unction E(z, z, t) exists that has one of the 
forms 

I. E(z, z, t) = R(r, 0, t) exp P(r, 0, t), 

I I . E(z, z, f) = R(ry 0, t) exp tP(r, 0, /), 

I I I . E(z, zy t) = tR(r, 0, t) exp tP(r, 0, /), 

where 

P(r, 0, t) = a0(r, 0) + at(r, 6)t2 + - • • + am(r9 0)t*»f 

R(f, 0, t) = J0(r, 0) + Ji(r, 0)/2 + • • • + bn(r, 6)fi», 

and where the a / r , 0) and bj(ry 0) are of class Cr in r and 0. Let up(rt 0) be 
the corresponding basic solutions and let R(dp/dr) =]C?+W£i(f\ 0)t2i

f 

(
0 \k m 

a» = ( - l W - - ) £ (2; + DCiW, 

T%e» the recurrence relation satisfied by these basic solutions is 

dUp pUp " n + ^ 

or r fc«o fcc-o 

if E has the form I ; 
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dup pup » ( 2 \ * «+» akyvup+k+v+1 

— = + 22^up+k + [—-J2J 22 0j%.0 , , 
oY r &«o W v &»0 *«o 2p + 2v + 1 

i / £ to the form I I ; and! 

diip * « , / 2 \ - » / « A \ 

6V r \re*V &-o *~o \2p + 2v + 1 / 

*»+n / 2 \ 
+ To^p + J2 \Vk Yfc-i ) «p+* 

fc-i \ re40 / 

if £ Aas the form I I I . 

UNIVERSITY OF WISCONSIN AT MILWAUKEE 

ON GAUSS' AND TCHEBYCHEFF'S QUADRATURE 
FORMULAS 

J. GERONIMUS 

The well known Gauss' Quadrature Formula 

(i) r ° ° G * ( * ) # ( * ) = E p»-w)Gfc(̂
n)) 

is valid for every polynomial G&(#), of degree k£*2n — 1, the {£*n)} 
being the roots of the polynomial Pn(#)> orthogonal with respect to 
the distribution d\l/(x) (i = l, 2, • • • , n; n = l, 2, • • • ).x If the se
quence {Pn(x)} is that of Tchebycheff (trigonometric) polynomials, 
then the Christoffel numbers p\n\ i = l, 2, • • • , n, are equal, and the 
two quadrature formulas of Gauss and Tchebycheff coincide: 

(2) f ° W ) # ( * ) = PnZG*(^n)), 
J ~oo *—1 

k g 2n - 1; n = 1, 2, 

The converse—that this is the only case of coincidence of these 
formulas—was proved by R. P. Bailey [ la] and, under more restric
tive conditions, by Krawtchouk [ lb] (cf. also [2]).2 

We shall give here four distinct proofs of this statement, without 
imposing any restrictions on yp(x). 

Received by the editors June 1, 1943. 
1 \p(x) is a bounded non-decreasing function, with infinitely many points of in

crease, for which all moments exist: c » ^ / ^ #*#(#); w = 0, 1, 2, • • • . 
2 Numbers in brackets refer to the bibliography at the end of the paper. 


