A RECURRENCE FORMULA FOR THE SOLUTIONS OF CERTAIN LINEAR PARTIAL DIFFERENTIAL EQUATIONS

MORRIS MARDEN

1. Introduction. In a number of recent papers, Bergman ${ }^{1}$ has developed the theory of operational methods for transforming analytic functions of a complex variable into solutions of the linear partial differential equation

$$
\begin{equation*}
L(U)=U_{z \bar{z}}+a(z, \bar{z}) U_{z}+b(z, \bar{z}) U_{\bar{z}}+c(z, \bar{z}) U=0 \tag{1.1}
\end{equation*}
$$

where $z=x+i y, \bar{z}=x-i y$,

$$
\begin{gathered}
U_{z}=\frac{1}{2}\left(\frac{\partial U}{\partial x}-i \frac{\partial U}{\partial y}\right), \quad U_{z}=\frac{1}{2}\left(\frac{\partial U}{\partial x}+i \frac{\partial U}{\partial y}\right), \\
U_{z \bar{z}}=\frac{1}{4}\left(\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}\right)=\frac{\Delta U}{4}
\end{gathered}
$$

and where the coefficients $a(z, \bar{z}), b(z, \bar{z})$ and $c(z, \bar{z})$ are analytic functions of both variables z and \bar{z}. The equation (1.1) is equivalent to the system of two real equations

$$
\begin{gathered}
\Delta U^{(1)}+2 A U_{x}^{(1)}+2 B U_{y}^{(1)}+2 C U_{x}^{(2)}+2 D U_{y}^{(2)} \\
+4 c_{1} U^{(1)}-4 c_{2} U^{(2)}=0 \\
\Delta U^{(2)}-2 C U_{x}^{(1)}-2 D U_{y}^{(1)}+2 A U_{x}^{(2)}+2 B U_{y}^{(2)} \\
+4 c_{2} U^{(1)}+4 c_{1} U^{(2)}=0,
\end{gathered}
$$

where

$$
\begin{array}{lll}
U=U^{(1)}+i U^{(2)} ; & 2 A=(a+\bar{a})+(b+\bar{b}) ; & 2 B=i[(\bar{a}-a)-(\bar{b}-b)] ; \\
c=c_{1}+i c_{2} ; & 2 D=(a+\bar{a})-(b+\bar{b}) ; & 2 C=i[(a-\bar{a})+(b-\bar{b})] .
\end{array}
$$

Presented to the Society, November 26, 1943; received by the editors November 13, 1943. This paper was prepared while the author was a fellow under the Program of Advanced Instruction in Mechanics at Brown University.
${ }^{1}$ S. Bergman, (a) Zur Theorie der Funktionen, die eine lineare partielle Differentialgleichung befriedigen, Rec. Math. (Mat. Sbornik) N.S. vol. 44 (1937) pp. 1169-1198; (b) The approximation of functions satisfying a linear partial differential equation, Duke Math. J. vol. 6 (1940) pp. 537-561; (c) Linear operators in the theory of partial differential equations, Trans. Amer. Math. Soc. vol. 53 (1943) pp. 130-155; (d) On the solutions of partial differential equations of the fourth order, to appear later.

Furthermore, if $a=b$ and c is real, then $C=D=c_{2}=0$, and the two differential equations become real and identical.

For equations (1.1), Bergman proved the existence of two functions $E_{1}(z, \bar{z}, t)$ and $E_{2}(z, \bar{z}, t)$, called by him "generating functions of the first kind," ${ }^{2}$ with the following properties:
(1) They have the forms

$$
\begin{aligned}
& E_{1}(z, \bar{z}, t)=\exp \left(-\int_{0}^{\bar{z}} a(z, \bar{z}) d \bar{z}\right)\left[1+z \bar{z} t E_{1}^{*}(z, \bar{z}, t)\right] \\
& E_{2}(z, \bar{z}, t)=\exp \left(-\int_{0}^{z} b(z, \bar{z}) d z\right)\left[1+z \bar{z} t E_{2}^{*}(z, \bar{z}, t)\right]
\end{aligned}
$$

where each $E_{k}^{*}(z, \bar{z}, t)$ has continuous first partial derivatives in z, \bar{z} and t for $|t| \leqq 1$ and for z and \bar{z} within a certain four-dimensional region.
(2) The classes $C\left(E_{1}\right)$ and $C\left(E_{2}\right)$ of functions $U_{1}(z, \bar{z})$ and $U_{2}(z, \bar{z})$ defined by the formulas

$$
\begin{align*}
& U_{1}(z, \bar{z})=\int_{-1}^{1} E_{1}(z, \bar{z}, t) f\left(z\left(1-t^{2}\right) / 2\right) d t /\left(1-t^{2}\right)^{1 / 2} \tag{1.2}\\
& U_{2}(z, \bar{z})=\int_{-1}^{1} E_{2}(z, \bar{z}, t) g\left(\bar{z}\left(1-t^{2}\right) / 2\right) d t /\left(1-t^{2}\right)^{1 / 2} \tag{1.3}
\end{align*}
$$

where $f(\zeta)$ and $g(\zeta)$ are arbitrary analytic functions of ζ, form subsets of solutions of (1.1).
(3) Every solution $U(z, \bar{z})$ of (1.1) may be written in the form

$$
U(z, \bar{z})=U_{1}(z, \bar{z})+U_{2}(z, \bar{z}),
$$

with $f(\zeta)$ and $g(\zeta)$ suitably chosen analytic functions.
As was proved by Bergman, to many theorems about analytic functions of a complex variable correspond analogous theorems about functions belonging to classes $C(E)$ generated by functions E of the first kind. In particular, if we define as "basic solutions" those corresponding to $f(z)=z^{p}$, that is

$$
\begin{equation*}
u_{p}(z, \bar{z})=\int_{-1}^{1} E(z, \bar{z}, t)\left[z\left(1-t^{2}\right) / 2\right]^{p} d t /\left(1-t^{2}\right)^{-1 / 2} \tag{1.4}
\end{equation*}
$$

then every function U of class $C(E)$ which is regular in $|z| \leqq r$ may

[^0]be expanded in a series $U=\sum \alpha_{p} u_{p}$ which is uniformly and absolutely convergent in $|z| \leqq r$.

For example, in the case of the equation

$$
\begin{equation*}
\Delta U+U=0 \tag{1.5}
\end{equation*}
$$

$E(z, \bar{z}, t)=e^{i t r}$, where $z=r e^{i \theta}$ and thus $r=(z \bar{z})^{1 / 2}$. Because of the well known formula for the Bessel function of the first kind

$$
J_{p}(r)=(2 / \pi)(1 / \Gamma(p+1 / 2)) \int_{-1}^{1} e^{r t i}(r / 2)^{p}\left(1-t^{2}\right)^{p-1 / 2} d t
$$

the basic solutions are

$$
\begin{equation*}
u_{p}(r, \theta)=\left(\pi^{1 / 2} / 2\right) \Gamma(p+1 / 2) e^{p \theta i} J_{p}(r) \tag{1.6}
\end{equation*}
$$

But for (1.5), successive terms in the expansion $U=\sum \alpha_{p} u_{p}$ can be computed from earlier terms by the use of some recurrence relation satisfied by the Bessel's functions, as for example the relation

$$
\begin{equation*}
J_{p}^{\prime}(r)=(p / r) J_{p}(r)-J_{p+1}(r) \tag{1.7}
\end{equation*}
$$

It would likewise be of practical value in the case of other differential equations $L(U)=0$ to determine what recurrence relations, if any, are satisfied by the basic solutions $u_{p}(r, \theta)$.

In the present note, recurrence formulas connecting the basic solutions $u_{p}(r, \theta)$ are found in the case of differential equations $L(U)=0$ for which at least one of the corresponding "generating functions" $E(z, \bar{z}, t)$ is of the form $E(z, \bar{z}, t)=\exp f(r, \theta, t)$ where $f(r, \theta, t)$ is a polynomial in t containing either only even powers of t or only odd powers of t. Obviously, the equation (1.5) is an example of such an equation. Other examples can be found by requiring the coefficients a, b and c in the equation $L(U)=0$ to satisfy certain differential relations. ${ }^{3}$

Our first main result may be stated as follows:
Theorem 1. Let $L(U)=0$ be a partial differential equation of the type (1.1) for which there exists a generating function having one of the forms:

$$
\begin{align*}
E(z, \bar{z}, t) & =\exp P(r, \theta, t) \tag{I}\\
E(z, \bar{z}, t) & =\exp t P(r, \theta, t) \tag{II}
\end{align*}
$$

where $P(r, \theta, t)=a_{0}(r, \theta)+a_{1}(r, \theta) t^{2}+\cdots+a_{n}(r, \theta) t^{2 n}$, and where the coefficients $a_{j}(r, \theta)$ are of class C^{\prime} in r and θ. Let $u_{p}(r, \theta)$ be the corresponding "basic solutions" of equation $L(U)=0$ and let

[^1]\[

$$
\begin{align*}
& \alpha_{q}(r, \theta)=(-1)^{q}\left[\sum_{j=q}^{n} C_{j, q} \frac{\partial a_{j}}{\partial r}\right]\left(\frac{2}{r e^{i \theta}}\right)^{q}, \tag{1.8}\\
& \beta_{q}(r, \theta)=(-1)^{q}\left[\sum_{j=q}^{n}(2 j+1) C_{j, q} a_{j}\right]\left(\frac{2}{r e^{i \theta}}\right)^{q} . \tag{1.9}
\end{align*}
$$
\]

Then, if E has form (I),

$$
\begin{equation*}
\frac{\partial u_{p}}{\partial r}=\frac{p}{r} u_{p}+\sum_{j=0}^{n} \alpha_{j} u_{p+j} \tag{1.10}
\end{equation*}
$$

whereas, if E has form (II),

$$
\begin{equation*}
\frac{\partial u_{p}}{\partial r}=\frac{p}{r} u_{p}+\frac{2}{r e^{i \theta}} \sum_{j, k=0}^{n} \frac{\alpha_{j} \beta_{k} u_{j+k+p+1}}{2 j+2 p+1} . \tag{1.11}
\end{equation*}
$$

The above theorem will be derived as an immediate consequence of two lemmas that are given in the next section. In the third section the theorem will be applied to a few specific equations of form (1.1).
2. Two lemmas. First we shall derive a result for polynomials $P(r, \theta, t)$ involving only even powers of t.

Lemma 1. Let

$$
P(r, \theta, t)=a_{0}(r, \theta)+a_{1}(r, \theta) t^{2}+\cdots+a_{n}(r, \theta) t^{2 n}
$$

where the $a_{j}(r, \theta)$ are functions of class C^{\prime} in r and θ. Then the function

$$
\begin{equation*}
u_{p}(r, \theta)=\int_{-1}^{1} e^{P(r, \theta, t)}\left(1-t^{2}\right)^{p-1 / 2}\left(r e^{i \theta} / 2\right)^{p} d t \tag{2.1}
\end{equation*}
$$

satisfies the recurrence formula

$$
\begin{equation*}
\partial u_{p} / \partial r=\left[p / r+P_{r}\left(r, \theta,(1-T)^{1 / 2}\right)\right] u_{p} \tag{2.2}
\end{equation*}
$$

where T is the operator such that, T acting k times upon u_{p},

$$
\begin{equation*}
T^{k} u_{p}=\left(2 / r e^{i \theta}\right)^{k} u_{p+k} \tag{2.3}
\end{equation*}
$$

for $k=0,1, \cdots$.
Proof. From (2.1) we obtain by differentiating with respect to r :

$$
\begin{align*}
\frac{\partial u_{p}}{\partial r}=\frac{p}{r} u_{p}+\int_{-1}^{1} e^{P}\left[\frac{\partial a_{0}}{\partial r}+\right. & \frac{\partial a_{1}}{\partial r} t^{2}+\cdots \tag{2.4}\\
& \left.+\frac{\partial a_{n}}{\partial r} t^{2 n}\right]\left(1-t^{2}\right)^{p-1 / 2}\left(\frac{r e^{i \theta}}{2}\right) d t .
\end{align*}
$$

To evaluate the latter integral, let us note that

$$
\begin{aligned}
& \int_{-1}^{1} t^{2 m} e^{P}\left(1-t^{2}\right)^{p-1 / 2}\left(r e^{i \theta} / 2\right)^{p} d t \\
&=\int_{-1}^{1}\left[1-\left(1-t^{2}\right)\right]^{m} e^{P}\left(1-t^{2}\right)^{p-1 / 2}\left(r e^{i \theta} / 2\right)^{p} d t \\
&=\sum_{k=0}^{m}(-1)^{k} C_{m, k} \int_{-1}^{1} e^{P}\left(1-t^{2}\right)^{k+p-1 / 2}\left(r e^{i \theta} / 2\right)^{p} d t \\
&=\sum_{k=0}^{m}(-1)^{k} C_{m, k}\left(2 / r e^{i \theta}\right)^{p} u_{p+k}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\int_{-1}^{1} t^{2 m} e^{P}\left(1-t^{2}\right)^{p-1 / 2}\left(r e^{i \theta} / 2\right)^{p} d t=(1-T)^{m} u_{p} \tag{2.5}
\end{equation*}
$$

Substituting now from (2.5) into (2.4), we find

$$
\begin{aligned}
\frac{\partial u_{p}}{\partial r} & =\frac{p}{r} u_{p}+\frac{\partial a_{0}}{\partial r} u_{p}+\frac{\partial a_{1}}{\partial r}(1-T) u_{p}+\cdots+\frac{\partial a_{n}}{\partial r}(1-T)^{n} u_{p} \\
& =\left[p / r+P_{r}\left(r, \theta,(1-T)^{1 / 2}\right)\right] u_{p}
\end{aligned}
$$

as was to be proved.
The corresponding result for a polynomial that involves only odd powers of t may be stated as follows.

Lemma 2. Let $Q(r, \theta, t) \equiv a_{0}(r, \theta) t+a_{1}(r, \theta) t^{3}+\cdots+a_{n}(r, \theta) t^{2 n+1}$ $\equiv t P(r, \theta, t)$, where the $a_{j}(r, \theta)$ are functians of class C^{\prime} in r and θ. Then the functions $u_{p}(r, \theta)$ defined by (2.1) satisfy the recurrence formula:

$$
\begin{align*}
\partial u_{p} / \partial r=(p / r) u_{p}+ & \left\{Q_{t}\left(r, \theta,(1-T)^{1 / 2}\right)\right. \\
& \left.\cdot \int_{0}^{T^{1 / 2}} t^{2 p} P_{r}\left(r, \theta,(1-t)^{1 / 2}\right) d t\right\} T^{-p+1 / 2} u_{p} \tag{2.6}
\end{align*}
$$

where T is the operator defined by equation (2.3).
Proof. In place of (2.4), we now have

$$
\begin{align*}
\frac{\partial u_{p}}{\partial r}=\frac{p}{r} u_{p}+\int_{-1}^{1} e^{Q}\left[\frac{\partial a_{0}}{\partial r}\right. & t+\frac{\partial a_{1}}{\partial r} t^{3}+\cdots \tag{2.7}\\
& \left.+\frac{\partial a_{n}}{\partial r} t^{2 n+1}\right]\left(1-t^{2}\right)^{p-1 / 2}\left(\frac{r e^{i \theta}}{2}\right)^{p} d t
\end{align*}
$$

In order to evaluate the latter integral, let us first integrate by parts:

$$
\begin{aligned}
& \int_{-1}^{1} t e^{Q}(1\left.-t^{2}\right)^{p-1 / 2}\left(r e^{i \theta} / 2\right)^{p} d t \\
&=-\frac{1}{2} \int_{-1}^{1} e^{Q}\left(1-t^{2}\right)^{p-1 / 2}\left(r e^{i \theta} / 2\right)^{p} d\left(1-t^{2}\right) \\
&=(1 /(2 p+1)) \int_{-1}^{1} e^{Q}(\partial Q / \partial t)\left(1-t^{2}\right)^{p+1 / 2}\left(r e^{i \theta} / 2\right)^{p} d t \\
&=(1 /(2 p+1)) \int_{-1}^{1} e^{Q}\left[a_{0}+3 a_{1} t^{2}+\cdots\right. \\
&\left.\quad+(2 n+1) a_{n} t^{2 n}\right]\left(1-t^{2}\right)^{p+1 / 2}\left(r e^{i \theta} / 2\right)^{p} d t
\end{aligned}
$$

Hence, by equation (2.5),

$$
\begin{array}{r}
\int_{-1}^{1} t e^{Q}\left(1-t^{2}\right)^{p-1 / 2}\left(r e^{i \theta} / 2\right)^{p} d t=(1 /(2 p+1)) Q_{t}\left(r, \theta,(1-T)^{1 / 2}\right) T u_{p} \\
=Q_{t}\left(r, \theta,(1-T)^{1 / 2}\right)\left(\int_{0}^{T^{1 / 2}} t^{2 p} d t\right) T^{-p+1 / 2} u_{p}
\end{array}
$$

Let us then assume that the formula

$$
\begin{align*}
& \int_{-1}^{1} t^{2 m+1} e^{Q}\left(1-t^{2}\right)^{p-1 / 2}\left(r e^{i \theta} / 2\right)^{p} d t \\
& \quad=Q_{t}\left(r, \theta,(1-T)^{1 / 2}\right)\left(\int_{0}^{T^{1 / 2}} t^{2 p}\left(1-t^{2}\right)^{m} d t\right) T^{-p+1 / 2} u^{p} \tag{2.8}
\end{align*}
$$

has already been verified for $m=0,1,2, \cdots, N$ and proceed to verify the formula for $m=N+1$, as follows.

$$
\begin{aligned}
\int_{-1}^{1} t^{2 N+3} e^{Q}(1- & \left.t^{2}\right)^{p-1 / 2}\left(r e^{i \theta} / 2\right)^{p} d t \\
= & \int_{-1}^{1} t^{2 N+1} e^{Q}\left(1-t^{2}\right)^{p-1 / 2}\left(r e^{i \theta} / 2\right)^{p} d t \\
& -\int_{-1}^{1} t^{2 N+1} e^{Q}\left(1-t^{2}\right)^{p+1 / 2}\left(r e^{i \theta} / 2\right)^{p} d t \\
= & Q_{t}\left(r, \theta,(1-T)^{1 / 2}\right)\left\{\left[\int_{0}^{T^{1 / 2}} t^{2 p}\left(1-t^{2}\right)^{N} d t\right] T^{-p+1 / 2} u_{p}\right. \\
& \left.-\left[\int_{0}^{T^{1 / 2}} t^{2 p+2}\left(1-t^{2}\right)^{N} d t\right]\left(2 / r e^{i \theta}\right) T^{-p-1 / 2} u_{p+1}\right\} \\
= & Q_{t}\left(r, \theta,(1-T)^{1 / 2}\right)\left(\int_{0}^{T^{1 / 2}} t^{2 p}\left(1-t^{2}\right)^{N+1} d t\right) T^{-p+1 / 2} u_{p}
\end{aligned}
$$

Thus, formula (2.8) has been established by mathematical induction.
We now substitute from formula (2.8) into expression (2.7), thus obtaining

$$
\begin{aligned}
\frac{\partial u_{p}}{\partial r}= & \frac{p}{r} u_{p}+\left(Q_{t}\left(r, \theta,(1-T)^{1 / 2}\right)\right. \\
& \left.\cdot \int_{0}^{T^{1 / 2}} t^{2 p}\left\{\frac{\partial a_{0}}{\partial r}+\frac{\partial a_{1}}{\partial r}\left(1-t^{2}\right)+\cdots+\frac{\partial a_{n}}{\partial r}\left(1-t^{2}\right)^{n}\right\}\right) T^{-p+1 / 2} u_{p} \\
= & \frac{p}{r} u_{p}+Q_{t}\left(r, \theta,(1-T)^{1 / 2}\right)\left\{\int_{0}^{T^{1 / 2}} t^{2 p} P_{r}\left(r, \theta,(1-t)^{1 / 2}\right)\right\} T^{-p+1 / 2} u_{p}
\end{aligned}
$$

as was to be proved.
Proof of Theorem 1. Formula (2.2) may be reduced to formula (1.10) if, using (1.8) and (2.3), we set

$$
\begin{aligned}
P_{r}\left(r, \theta,(1-T)^{1 / 2}\right) u_{p} & =\sum_{j=0}^{n} \frac{\partial a_{j}}{\partial r}(1-T)^{i} u_{p}=\sum_{q=0}^{n} \alpha_{q}\left(\frac{r e^{i \theta}}{2}\right)^{q} T^{q} u_{p} \\
& =\sum_{q=0}^{n} \alpha_{q} u_{p+q}
\end{aligned}
$$

To reduce formula (2.6) to (1.11), let us set

$$
Q_{t}\left(r, \theta,(1-T)^{1 / 2}\right)=\sum_{j=0}^{n}(2 j+1) a_{i}(1-T)^{j}=\sum_{j=0}^{n} \beta_{j}\left(\frac{r e^{i \theta}}{2}\right)^{j} T^{j}
$$

with the β_{j} defined as in formula (1.9). Since

$$
P_{r}\left(r, \theta,\left(1-t^{2}\right)^{1 / 2}\right)=\sum_{j=0}^{n} \alpha_{i}\left(\frac{r e^{i \theta}}{2}\right)^{j} t^{2 j}
$$

we may write the second term of the left side of (2.6) as

$$
\begin{aligned}
& \sum_{k=0}^{n} \beta_{k}\left(\frac{r e^{i \theta}}{2}\right)^{k} T^{k}\left[\int_{0}^{T^{1 / 2}} t^{2 p} \sum_{j=0}^{n} \alpha_{i}\left(\frac{r e^{i \theta}}{2}\right)^{j} t^{2 j} d t\right] T^{-p+1 / 2} u_{p} \\
& \quad=\sum_{j, k=0}^{n} \frac{\alpha_{j} \beta_{k}}{2 p+2 j+1}\left(\frac{r e^{i \theta}}{2}\right)^{i+k} T^{k+j+1} u_{p}=\frac{2}{r e^{i \theta}} \sum_{j, k=0}^{n} \frac{\alpha_{j} \beta_{k} u_{p+j+k+1}}{2 p+2 j+1} .
\end{aligned}
$$

Thus the proof of our main theorem is completed.
3. Examples. Let us first verify that the recurrence relation (2.6) is a generalization of that for Bessel's functions as given in formula (1.7). Here $Q(r, \theta, t)=r t i$ and thus (2.6) becomes

$$
\begin{align*}
\partial u_{p} / \partial r & =(p / r) u_{p}+r i\left[\int_{0}^{T^{1 / 2}} t^{2 p} i d t\right] T^{-p+1 / 2} u_{p} \tag{3.1}\\
& =(p / r) u_{p}-\left(2 e^{-i \theta} /(2 p+1)\right) u_{p+1}
\end{align*}
$$

If now we set

$$
\begin{aligned}
u_{p} & =\left(\pi^{1 / 2} / 2\right) \Gamma(p+1 / 2) J_{p}(r) e^{i p \theta} \\
u_{p+1} & =\left(\pi^{1 / 2} / 2\right)(p+1 / 2) \Gamma(p+1 / 2) J_{p+1}(r) e^{i(p+1) \theta}
\end{aligned}
$$

formula (3.1) reduces at once to formula (1.7).
As our second example, let us consider the differential equation $L(U)=0$ in which the expression $F=c-a b-a_{z} \neq 0$ satisfies the two equations

$$
\begin{equation*}
F_{z}=0, \quad 2 F-a_{z}+b_{z}=0 \tag{3.2}
\end{equation*}
$$

As shown by Bergman, ${ }^{4}$ one of the possible corresponding generating functions is $E(z, \bar{z}, t)=\exp P(r, \theta, t)=\exp \left(a_{0}+a_{1} t^{2}\right)$, where

$$
\begin{equation*}
a_{0}=-\int_{0}^{z} a d \bar{z}, \quad a_{1}=2 z \int_{0}^{z} F d \bar{z} \tag{3.3}
\end{equation*}
$$

According to our theorem, the recurrence relation satisfied by the basic solutions is in this case

$$
\begin{equation*}
\left(\partial u_{p} / \partial r\right)=(p / r) u_{p}+\alpha_{0} u_{p}+\alpha_{1} u_{p+1} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \alpha_{0}=\partial a_{0} / \partial r+\partial a_{1} / \partial r=-a e^{-i \theta}+2 r F+2 e^{i \theta} \int_{0}^{z} F d \bar{z} \\
& \alpha_{1}=-\left(2 / r e^{i \theta}\right)\left(\partial a_{1} / \partial r\right)=-4 e^{-i \theta} F-(4 / r) \int_{0}^{i} F d \bar{z}
\end{aligned}
$$

A partial differential equation which satisfies conditions (3.2) is

$$
\begin{equation*}
U_{z \bar{z}}-2(z+\bar{z}) U_{z}+U=0 \tag{3.5}
\end{equation*}
$$

Here $F(z)=1, a_{0}=0, a_{1}=2 r^{2}$, and therefore in the recurrence relation (3.4) $\alpha_{0}=4 r$, and $\alpha_{1}=-8 e^{-i \theta}$. Setting $U=U^{(1)}+i U^{(2)}$, we see that equation (3.5) is equivalent to the system of two partial differential equations

$$
\begin{aligned}
& \Delta U^{(1)}-8 x U_{x}^{(1)}+8 x U_{y}^{(2)}+4 U^{(1)}=0 \\
& \Delta U^{(2)}-8 x U_{x}^{(2)}-8 x U_{y}^{(1)}+4 U^{(2)}=0
\end{aligned}
$$

[^2]and that recurrence relation (3.4) for $u_{p}=u_{p}^{(1)}+i u_{p}^{(2)}$ is in this case equivalent to the system of recurrence relations
\[

$$
\begin{aligned}
& \partial u_{p}^{(1)} / \partial r=(p / r) u_{p}^{(1)}+4 r u_{p}^{(1)}-8 u_{p+1}^{(1)} \cos \theta-8 u_{p+1}^{(2)} \sin \theta, \\
& \partial u_{p}^{(2)} / \partial r=(p / r) u_{p}^{(2)}+4 r u_{p}^{(2)}-8 u_{p+1}^{(2)} \cos \theta+8 u_{p+1}^{(1)} \sin \theta .
\end{aligned}
$$
\]

Other examples of partial differential equations $L(U)=0$ for which $\log E$ is an even or odd polynomial in t may be found in the articles referred to in footnotes 1 a and 3. For these differential equations also, a recurrence relation may be derived by use of Lemmas 1 and 2.
4. Generalization. By means of formulas (2.5) and (2.8), the theorem given in the introduction may be extended to partial differential equations of type (1.1) for which a generating function exists that has the form $E=g \exp f$ with both f and g suitably chosen polynomials in t. The generalization may be stated as follows.

Theorem 2. Let $L(U)=0$ be a partial differential equation of type (1.1) for which a generating function $E(z, \bar{z}, t)$ exists that has one of the forms

$$
\begin{aligned}
\text { I. } & E(z, \bar{z}, t)=R(r, \theta, t) \exp P(r, \theta, t) \\
\text { II. } & E(z, \bar{z}, t)=R(r, \theta, t) \exp t P(r, \theta, t) \\
\text { III. } & E(z, \bar{z}, t)=t R(r, \theta, t) \exp t P(r, \theta, t)
\end{aligned}
$$

where

$$
\begin{aligned}
& P(r, \theta, t)=a_{0}(r, \theta)+a_{1}(r, \theta) t^{2}+\cdots+a_{m}(r, \theta) t^{2 m} \\
& R(r, \theta, t)=b_{0}(r, \theta)+b_{1}(r, \theta) t^{2}+\cdots+b_{n}(r, \theta) t^{2 n}
\end{aligned}
$$

and where the $a_{j}(r, \theta)$ and $b_{j}(r, \theta)$ are of class C^{\prime} in r and θ. Let $u_{p}(r, \theta)$ be the corresponding basic solutions and let $R(\partial p / \partial r)=\sum_{0}^{m+n} c_{j}(r, \theta) t^{2 j}$,

$$
\begin{gathered}
\alpha_{k}=(-1)^{k}\left(\frac{2}{r e^{i \theta}}\right)^{k} \sum_{j=k}^{m}(2 j+1) C_{j, k} a_{j} \\
\beta_{k}=(-1)^{k}\left(\frac{2}{r e^{i \theta}}\right)^{k} \sum_{j=k}^{n} C_{j, k} \frac{\partial b_{j}}{\partial r} ; \quad \gamma_{k}=(-1)^{k}\left(\frac{2}{r e^{i \theta}}\right)^{k} \sum_{j=k}^{n+m} C_{j, k} C_{j}
\end{gathered}
$$

Then the recurrence relation satisfied by these basic solutions is

$$
\frac{\partial u_{p}}{\partial r}=\frac{p u_{p}}{r}+\sum_{k=0}^{n} \beta_{k} u_{p+k}+\sum_{k=0}^{n+m} \gamma_{k} u_{p+k}
$$

if E has the form I ;

$$
\frac{\partial u_{p}}{\partial r}=\frac{p u_{p}}{r}+\sum_{k=0}^{n} \beta_{k} u_{p+k}+\left(\frac{2}{r e^{i \theta}}\right) \sum_{k=0}^{m} \sum_{\nu=0}^{m+n} \frac{\alpha_{k} \gamma_{\nu} u_{p+k+\nu+1}}{2 p+2 \nu+1}
$$

if E has the form II; and

$$
\begin{array}{r}
\frac{\partial u_{p}}{\partial r}=\frac{p u_{p}}{r}+\left(\frac{2}{r e^{i \theta}}\right) \sum_{k=0}^{m} \sum_{\nu=0}^{n}\left(\frac{\alpha_{k} \beta_{\nu}}{2 p+2 \nu+1}\right) u_{p+k+\nu+1} \\
+\gamma_{0} u_{p}+\sum_{k=1}^{m+n}\left(\gamma_{k}-\frac{2}{r e^{i \theta}} \gamma_{k-1}\right) u_{p+k}
\end{array}
$$

if E has the form III.

University of Wisconsin at Milwaukee

ON GAUSS' AND TCHEBYCHEFF'S QUADRATURE FORMULAS

J. GERONIMUS

The well known Gauss' Quadrature Formula

$$
\begin{equation*}
\int_{-\infty}^{\infty} G_{k}(x) d \psi(x)=\sum_{i=1}^{n} \rho_{i}^{(n)} G_{k}\left(\xi_{i}^{(n)}\right) \tag{1}
\end{equation*}
$$

is valid for every polynomial $G_{k}(x)$, of degree $k \leqq 2 n-1$, the $\left\{\xi_{i}^{(n)}\right\}$ being the roots of the polynomial $P_{n}(x)$, orthogonal with respect to the distribution $d \psi(x)(i=1,2, \cdots, n ; n=1,2, \cdots) .{ }^{1}$ If the sequence $\left\{P_{n}(x)\right\}$ is that of Tchebycheff (trigonometric) polynomials, then the Christoffel numbers $\rho_{i}^{(n)}, i=1,2, \cdots, n$, are equal, and the two quadrature formulas of Gauss and Tchebycheff coincide:

$$
\begin{equation*}
\int_{-\infty}^{\infty} G_{k}(x) d \psi(x)=\rho_{n} \sum_{i=1}^{n} G_{k}\left(\xi_{i}^{(n)}\right), \quad k \leqq 2 n-1 ; n=1,2, \cdots \tag{2}
\end{equation*}
$$

The converse-that this is the only case of coincidence of these formulas-was proved by R. P. Bailey [1a] and, under more restrictive conditions, by Krawtchouk [1b] (cf. also [2]). ${ }^{2}$

We shall give here four distinct proofs of this statement, without imposing any restrictions on $\psi(x)$.

[^3]
[^0]: ${ }^{2}$ Generating functions which are considered as not of the first kind are those failing to satisfy property (1). When E is a generating function not of the first kind, the integration in (1.2) and (1.3) must be taken along a rectifiable curve joining the points $t= \pm 1$, but not passing through $t=0$.

[^1]: ${ }^{8}$ See reference in footnote 1a, pp. 1194-1195, and also p. 158 of the following article: K. L. Nielsen and B. P. Ramsay, On particular solutions of linear partial differential equations, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 156-162.

[^2]: ${ }^{4}$ See p. 1194, reference in footnote 1a.

[^3]: Received by the editors June 1, 1943.
 ${ }^{1} \psi(x)$ is a bounded non-decreasing function, with infinitely many points of increase, for which all moments exist: $c_{n}=\int_{--\infty}^{\infty} x^{n} d \psi(x) ; n=0,1,2, \cdots$.
 ${ }^{2}$ Numbers in brackets refer to the bibliography at the end of the paper.

