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The nature of the problem. Let a homaloidal net be defined by its 
order n and its multiplicities $it s2, • • • , sp a t set P\ of p general 
points in the plane. The positive integers n, Si, $2, • • • , $P satisfy the 
equations 

2 . 2 . i 2 2 1 

Si + $2 + • • • + sp — Zn = — 3. 

A planar Cremona transformation C is set up by putting this net into 
projective correspondence with a net of lines in another plane. If a 
complete and regular linear system Sp,d of dimension d, the generic 
curve of the system having the genus p, has the order Xo and the 
multiplicities Xi, #2, • • • , xpt then x= {XQ; XI, • • • , xp} is called the 
characteristic of 2Pf«j. The image of 2p,d under C is another linear 
system of the same p, d and a characteristic # ' = {xi ; x{, • • • , #p'} 
a t the set Ç2 of the fundamental points of C*"1. x' is related to # by the 
substitution 

(2) 

xi = nxo — fiffi — . . . — rpxpi 

x{ = SIXQ — a n # i — . . . — aipXp, 

Xp = SpXo — OLpiXi — . . . — OJpp^p. 

The sets of numbers {st, an, • • • , a*P} are the characteristics of the 
principal curves of C a t P\ and satisfy the equations 

2 2 2 2 
au + au + • • • + dip — Si = 1 , 
a a + a»2 + • • • + atp — 3s< = — 1. 

The linear substitution (2) has as absolute invariants the forms 

2 2 2 2 
(XX) S Si + ff2 + * • " + Xp ~ Xo\ 

(4) 
(to) s xi + X2 + • • • + Xp — 3xo. 

The problems considered in this paper arise from the fact that the 
converses of two of the above statements do not hold. There are sets 
of positive integers satisfying equations (1) which are not associated 
with any homaloidal net and there are linear substitutions (2) which 

Presented to the Society, April 29, 1944; received by the editors April 17, 1944. 

692 



THE COMPLETION OF A THEOREM OF KANTOR 693 

leave {xx), (lx) invariant which are not associated with any planar 
Cremona transformation. A solution of (1) or a linear substitution (2) 
which does have the geometric meaning described above will be said 
to be proper. 

In his prize memoir [8]*of 1884, S. Kantor stated the following 
proposition: a linear substitution (2) leaving (xx) and (lx) invariant 
and in which n, st-, r;-, a»y are non-negative integers is proper. He gave 
two "proofs" of the assertion. In 1931, Cooolidge [4] recognized the 
importance of the proposition and supported it with an argument 
like one of Kantor's. At the time Coble [l ] pointed out that the proof 
was not valid. In 1934, this writer [5] constructed an example (p = 11) 
which showed that the proposition was not true; and, in 1940, by 
using the specific results [2] of Coble on irreducible solutions of (3), 
it was possible to prove [6, p. 865] that Kan tor's theorem was true 
f o r p < l l . 

The purpose of this paper is to exhibit further necessary conditions 
on a proper linear substitution which will also be sufficient for all 
values of p. 

1. Two lemmas. 

LEMMA 1. Let {p} = {po) pu • • • , pP} be an integer solution of equa
tions (3) such that po^O and pi^p2^ • • • s^pp. Thenlpo—pi—pt—pz 
è 0 . 

It is easily verified that for each of £o = 0, 1 there is a unique solu
tion, and that each satisfies the lemma. In the case £o>l> it may be 
shown that po>pi. Indeed, po=pi requires that £o = 0, 1 and it is easy 
to show that pi>po is impossible for po>l. Thus for po>l we may 
write 

pi = po — bi; p2 — po — b2; p% = po — i s , 

where 0<bi^b2^h. Substitution in the quadratic relation of (3) 
yields 

pi + • • • + p\ + b\ + bl + bl + 2pl = 1 + 2(»i + b2 + h)p*. 

But 

3 ^ b\ + bl + bl + pi + • • • + pi 
Adding these yields 

2(pl + 1) ^ 2(»x + h + h)p0. 
1 Numbers in brackets refer to the bibliography at the end of the paper. 
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Hence, 

po < bi + b2 + bz, 

3po — bi — #2 ~ bz < 2̂ o î 
or 

pi + p2 + pz < 2p0. 

The restriction that pi^p2^ ; • • ^pP is not essential to the proof. 
Indeed, it is clear that if the inequality holds for the three largest 
of pi, then it must hold for any three. 

LEMMA 2. If an integer linear substitution L(I) of the form (2) leaves 
(xx), (lx) invariant, and if the numbers {n; r,} constitute a proper solu
tion of (1), then the L(I) is proper. 

Since the characteristic {n; r,} is proper, it is associated with a 
Cremona transformation which has the description 

XQ = nXQ — <T\Xi • > — • • • — CTpXpy 

x{ = rixi — /Suffi — . . . — plpxp, 

Xp — r pX\ PpiXi . . . PppXp» 

Consider the product2 L(I)L(C) as being in the form (2) with 
primed coefficients. It is a linear substitution with (xx) and (lx) as 
invariants and hence [3 ] : 

(i) {n'\ si } and \n'\ rj } satisfy (1); 
(ii) {s{ ; ai} } and {r} ; at} } satisfy (3) ; and 
(iii) s! s£ —oLiiOLki —adah{ — • • • —a*/a*/ =0, *V*. 

Now n' = n2 — r\— • • • —rjj=lf and hence, from (i), r{ = • • • =rp' 
= si = • • • =5P' =0. Since the characteristics {5/ ; ai} } [r} ; at} ] sat
isfy (3), have ${ = 0 [r/ = 0] and are integral, they must be of type 
{O; O'»-1 — l } . From (iii) it is clear that if a*ƒ = — 1, and akl = — 1, 
then J9*l. L(I)L(C) must then be the identity or a permutation P 
of the letters *i, • • • , *,. Then L ( I ) = L - 1 ( 0 or L(I)=PLrl{C). In 
either case, £( / ) is proper. 

2. The proof of the theorem. 

THEOREM 1. A linear substitution L of the form (2) is proper if and 
only if: 

(a) the coefficients are integers, 
(b) (xx) and (lx) are absolute invariants, and 
1 The convention for order of multiplication is L(C) followed by L(J). 
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(c) pi has the same sign as pQ if {p} is a solution of (3) and 
L{p} = {P'}. 

The necessity of conditions (a), (b) is well known [9]. Now a geo
metric L(C) may be expressed as the product of linear substitutions 
which are permutations of X\, • • • , xp, and of 

xi = 2#o — %i — %2 — oczy 

Ai2z' xt = Xi + (xo — a;i — 2̂ — #3), i = 1, 2, 3, 

xj = xit j = 4, • • • , p. 

By Lemma 1 it is clear that under Am any solution \p] of (3) with 
/>o^O goes into a {/>'} of pi èO. Since -4m is an involution, it must 
then send a {p} of £ 0<0 into a {£'} of /><f <0. L(C) must then have 
the same property. 

The proof of the sufficiency of the conditions depends on the follow
ing theorem : 

THEOREM 2 [7]. Let {7} be an integer solution of equations (1) ar
ranged so that T ie 72 e • • • ^Yp. Further, let {y} satisfy the finite set 
of inequalities £oYo—piYi — • • • —£PYP^0> where the characteristics 
{p} run over the finite set of all proper solutions of (3) with po<yo and 
so ordered that px^p^ • • • «è£P. Then {y} is the characteristic of a 
homaloidal net. 

The ordering of {Y} and {p} is not necessary, but is stated for 
emphasis. 

To demonstrate that an L of the form (2) satisfying (a), (b), (c) 
is proper, note first that {n; r\, • • • , rp) is an integer solution of (1) 
as a consequence of (a), (b), and (i). The invariance of the sign of p0 

assures that the inequalities of Theorem 2 hold. Thus {n; n, • • • , rp] 
is the characteristic of a homaloidal net. By Lemma 2, the linear sub
stitution L is proper. 

The restriction of integer coefficients is indeed essential. An ex
ample has been exhibited [6, p. 863] for p = 9 which satisfies all other 
conditions and is not an L(C) since the numbers Si, a^ are rational. 
The proof of the sufficiency of the conditions of Theorem 1 could be 
proved by the method Coolidge uses; under the conditions given here, 
that argument is valid. 

3. Some results. 

COROLLARY I. If a solution {p} of equations (3) satisfies 

poCo — piCi — - • • • — ppcp ^ 0 
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for a single proper {c} which is a solution of (l), then it satisfies that 
relation for every proper {c}. 

COROLLARY 2. Given solutions {c}, \p) of (1) and (3) such that 
po>0, PQCQ—piCi— • • • —ppCQ<0, then {c} is not proper. 

COROLLARY 3. The linear substitution group generated by Am and 
the permutations of x\, #2, • • • , xp is completely characterized by condi
tions (a), (b), (c) of Theorem 1. 

The above results follow easily from Theorem 1. A similar theorem 
for characteristics for which Xo never vanishes would be useful. 
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