THE ROLE OF INTERNAL FAMILIES IN MEASURE THEORY

ANTHONY P. MORSE

1. Introduction. Theorem 4.7 below is an abstract formulation of a certain closed subset theorem ${ }^{1}$ recently established by Randolph and myself. It has a wider range of application than similar abstractions due to Hahn ${ }^{2}$ and to Saks. ${ }^{3}$
2. Notation and terminology. When H is a family of sets we agree that

$$
\sigma(H)=\sum_{\beta \in H} \beta, \quad \pi(H)=\prod_{\beta \in H} \beta .
$$

A family R is said to be: finitely additive if $\sigma(H) \in R$ whenever H is a finite nonvacuous subfamily of R; countably additive if $\sigma(H) \in R$ whenever H is a countable nonvacuous subfamily of R; finitely multiplicative if $\pi(H) \in R$ whenever H is a finite nonvacuous subfamily of R; countably multiplicative if $\pi(F) \in R$ whenever F is a countable nonvacuous subfamily of R; α complemental if R is such a family of subsets of α that $\alpha-\beta \in R$ whenever $\beta \in R$.

If R is a family of sets we also agree that: R_{σ} is the family of all sets of the form $\sigma(H)$ where H is a countable nonvacuous subfamily of $R ; R_{\delta}$ is the family of all sets of the form $\pi(H)$ where H is a countable nonvacuous subfamily of $R ; R_{\gamma}$ is the family of all sets of the form $\sigma(R)-\beta$ where $\beta \in R ; R^{\gamma}$ is the smallest $\sigma(R)$ complemental, countably additive family which contains $R ; R^{\delta}$ is the smallest countably multiplicative, countably additive family which contains R.

Definition 2.1. R is internal if and only if R_{δ} is finitely additive and $R_{\gamma} \subset R^{\delta}$.

Remark 2.2 If R is the family of all closed subsets of a metric space then R is internal ${ }^{4}$ and the members of R^{γ} are the Borel subsets of the space.

[^0]
3. Two known results in set theory.

Theorem 3.1. $R_{\mathrm{\delta}}$ is countably multiplicative. If R is finitely additive then so is R_{d}.

Proof. $R_{\mathbf{8}}$ is clearly countably multiplicative. The remainder of the theorem follows from the identity

$$
\prod_{x \in A} x+\prod_{y \in B} y=\prod_{x \in A} \prod_{y \in B}(x+y) .
$$

Theorem 3.2.5 If $R_{\gamma} \subset R^{\delta}$ then $R^{\gamma}=R^{\delta}$.
Proof. Let $\tilde{\alpha}=\sigma(R)-\alpha$. Let

$$
P=\underset{\alpha}{E}\left[\left(\alpha \in R^{\delta}\right)\left(\tilde{\alpha} \in R^{\delta}\right)\right] .
$$

A simple check reveals that P is a $\sigma(R)$ complemental, countably additive subfamily of R^{δ}. Our assumption that R_{γ} is contained in R^{δ} assures us, on the other hand, that P contains R. Accordingly $R^{r} \subset P \subset R^{\delta}$. Now R^{r}, being $\sigma(R)$ complemental and countably additive, is clearly countably multiplicative also. Consequently $R^{\delta} \subset R^{r}$ and the desired conclusion is at hand.

4. The role of internal families in measure theory.

Definition 4.1. We say ϕ measures S if and only if ϕ is such a function on $E_{\beta}[\beta \subset S]$ to $E_{t}[0 \leqq t \leqq \infty]$ that:
I. $\phi(0)=0$;
II. $\phi(A) \leqq \phi(B)$ whenever $A \subset B \subset S$;
III. If H is any countable family for which $\sigma(H) \subset S$, then

$$
\phi[\sigma(H)] \leqq \sum_{\beta \in H} \phi(\beta)
$$

Theorem 4.2. If ϕ measures S and ϕ measures T then $S=T$.
Due to Carathéodory ${ }^{6}$ is
Definition 4.3. A set A is ϕ measurable if and only if ϕ measures some superset S of A in such a way that

$$
\phi(T)=\phi(T A)+\phi(T-A)
$$

whenever $T \subset S$.

[^1]Theorem 4.4. If R is a family of ϕ measurable sets, ϕ measures $\sigma(R)$, then R^{8} and R^{γ} are families of ϕ measurable sets.

Proof. Let M be the family of all ϕ measurable sets. Clearly M is $\sigma(R)$ complemental and countably additive. ${ }^{7}$ Consequently $R^{\delta} \subset R^{r}$ $\subset M$.

Lemma 4.5. If R_{δ} is a finitely additive family of ϕ measurable sets, ϕ measures $\sigma(R), \phi[\sigma(R)]<\infty, B \in R^{\delta}, \epsilon>0$, then B contains such a member C of R_{δ} that $\phi(B-C)<\epsilon$.

Proof. Let K be so defined that $\beta \in K$ if and only if corresponding to each positive number η there is such a member C of R_{δ} that

$$
C \subset \beta, \quad \phi(\beta-C)<\eta
$$

We shall complete the proof by showing in Part III below that $B \in K$.

Part I. If H is a countable nonvacuous subfamily of K then $\sigma(H) \in K$ and $\pi(H) \in K$.

Proof. Let $\eta>0$. Let $A_{1}, A_{2}, A_{3}, \cdots$ be a sequence whose range is H. Let $C_{1}, C_{2}, C_{3}, \cdots$ be such members of $R_{\mathbf{\delta}}$ that

$$
C_{n} \subset A_{n}, \quad \phi\left(A_{n}-C_{n}\right)<\frac{\eta}{2^{n}}
$$

for each positive integer n.
Now

$$
\begin{aligned}
\phi\left[\sigma(H)-\sum_{n=1}^{\infty} C_{n}\right] & =\phi\left[\sum_{n=1}^{\infty} A_{n}-\sum_{n=1}^{\infty} C_{n}\right] \leqq \phi\left[\sum_{n=1}^{\infty}\left(A_{n}-C_{n}\right)\right] \\
& \leqq \sum_{n=1}^{\infty} \phi\left(A_{n}-C_{n}\right)<\sum_{n=1}^{\infty} \frac{\eta}{2^{n}}=\eta
\end{aligned}
$$

Accordingly if N is a sufficiently large integer we are sure that

$$
\sum_{n=1}^{N} C_{n} \in R_{\mathrm{j}}, \quad \sum_{n=1}^{N} C_{n} \subset \sigma(H), \quad \phi\left[\sigma(H)-\sum_{n=1}^{N} C_{n}\right]<\eta
$$

On the other hand

$$
\pi(H)=\prod_{n=1}^{\infty} A_{n}
$$

[^2]and $\prod_{n=1}^{\infty} C_{n}$ is such a member (see 3.1) of R_{δ} that
\[

$$
\begin{aligned}
& \prod_{n=1}^{\infty} C_{n} \subset \pi(H) \\
& \phi\left[\pi(H)-\prod_{n=1}^{\infty} C_{n}\right]=\phi\left[\sum_{n=1}^{\infty}\left\{\pi(H)-C_{n}\right\}\right] \leqq \phi\left[\sum_{n=1}^{\infty}\left(A_{n}-C_{n}\right)\right] \\
& \leqq \sum_{n=1}^{\infty} \phi\left(A_{n}-C_{n}\right)<\sum_{n=1}^{\infty} \frac{\eta}{2^{n}}=\eta
\end{aligned}
$$
\]

Part II. $R \subset K$.
Proof. $R \subset R_{\delta} \subset K$.
Part III. $B \in K$.
Proof. Parts I and II assure us that K is a countably multiplicative, countably additive family which contains R. Consequently $R^{\delta} \subset K$ and the conclusion that $B \in K$ follows from our hypothesis that $B \in R^{\delta}$.

Theorem 4.6. If R_{δ} is a finitely additive family of ϕ measurable sets, ϕ measures $\sigma(R), B \in R^{\delta}, \phi(B)<\infty, \epsilon>0$, then B contains such a member C of R_{δ} that $\phi(B-C)<\epsilon$.

Proof. Let Φ be such a function on the subsets of $\sigma(R)$ that

$$
\Phi(\alpha)=\phi(B \alpha) \quad \text { whenever } \quad \alpha \subset \sigma(R)
$$

Check that Φ measures $\sigma(R)$ and that 4.5 may be applied to yield the desired conclusion.

Theorem 4.7. If R is an internal family of ϕ measurable sets, ϕ measures $\sigma(R), B \in R^{r}, \phi(B)<\infty, \epsilon>0$, then B contains such a member C of R_{δ} that $\phi(B-C)<\epsilon$.

Proof. Use 4.6, 2.1, and 3.2.
Definition 4.8. We say ϕ is a Borelian measure with respect to R if and only if : R is an internal family of ϕ measurable sets; ϕ measures $\sigma(R)$; corresponding to each subset A of $\sigma(R)$ there is a set β for which

$$
\beta \in R^{\gamma}, \quad A \subset \beta, \quad \phi(A)=\phi(\beta)
$$

Theorem 4.9. If ϕ is a Borelian measure with respect to R, A is a ϕ measurable set, $\phi(A)<\infty, \epsilon>0$, then A contains such a member C of $R_{\mathbf{\delta}}$ that $\phi(A-C)<\epsilon$.

Proof. Let $B^{\prime}, B^{\prime \prime}, B^{\prime \prime \prime}$ be such sets that

$$
A \subset B^{\prime} \in R^{r}, \quad \phi\left(B^{\prime}\right)=\phi(A)
$$

$$
\begin{gathered}
B^{\prime}-A \subset B^{\prime \prime} \in R^{r}, \quad \phi\left(B^{\prime \prime}\right)=\phi\left(B^{\prime}-A\right) \\
B^{\prime \prime \prime}=B^{\prime}-B^{\prime \prime}
\end{gathered}
$$

Clearly

$$
\begin{gathered}
B^{\prime \prime \prime} \in R^{r}, \quad B^{\prime \prime \prime}=B^{\prime}-B^{\prime \prime} \subset B^{\prime}-\left(B^{\prime}-A\right) \subset A \\
\phi\left(A-B^{\prime \prime \prime}\right) \leqq \phi\left(B^{\prime}-B^{\prime \prime \prime}\right) \leqq \phi\left(B^{\prime \prime}\right)=\phi\left(B^{\prime}\right)-\phi(A)=0 .
\end{gathered}
$$

Application of 4.7 to the set $B^{\prime \prime \prime}$ completes the proof.
Theorem 4.10. If R is the family of all closed subsets of a metric space S, ϕ measures S in such a way that closed sets are ϕ measurable, B is a Borel set, $\phi(B)<\infty, \epsilon>0$, then B contains such a closed set C that $\phi(B-C)<\epsilon$.

Proof. Clearly R is an internal family for which $R=R_{\boldsymbol{\delta}}$, and $\sigma(R)=S$. Application of 4.7 completes the proof. Using 4.9 we obtain

Theorem 4.11. If R is the family of all closed subsets of a metric space S, ϕ is a Borelian measure with respect to R, A is ϕ measurable, $\phi(A)<\infty, \epsilon>0$, then A contains such a closed set C that $\phi(A-C)<\epsilon$.

Remark 4.12. Theorems 4.9 and 4.11 are generalizations of a result due to Hahn. ${ }^{8}$ For corollaries and special cases of Theorems 4.7, 4.9, 4.10 , and 4.11 , see Saks, op. cit., Theorem 6.5 on page 68 , Theorem 6.6 on page 69 , the correct portions of Theorem $9.7+$ on page 85 , the proof of Lemma 5.1 on page 114, Lemma 15.1 on page 152.

Let us now examine, in the light of an example, the just cited Theorem $9.7+$ and my own Theorem 4.7. Let S be the ordinary real numbers metrized in the customary manner. Let F be the family of all closed subsets of S, G the family of all open subsets of S. Let $R=F_{\sigma} G_{\delta}$. It is easily seen, with the aid of 3.1 , that R is a finitely additive, S complemental, internal family. Furthermore $\sigma(R)=S$ and R^{r} is precisely the family of all Borel subsets of S. Let B be the rational numbers and let ϕ so measure S that

$$
\phi(\beta)=\text { the number of numbers in } \beta B
$$

whenever $\beta \subset S$. Note that $\phi(B)=\phi(S)=\infty$ but that S is a countable sum of Borel sets of finite ϕ measure. However, within the Borel set B, it is impossible to find a G_{δ} set C for which $\phi(B-C)<1$; if this could be done then C would equal B and B itself would be a G_{δ} in contradiction to the well known fact that a dense G_{δ} is a residual set with the power of the continuum. Since $R_{\delta} \subset G_{\delta}$ it is also impossible to find, within the Borel set B, an R_{δ} set C for which $\phi(B-C)<1$.

[^3]This reveals the essential nature of the hypothesis " $\phi(B)<\infty$ " in 4.7 as well as the erroneous aspects of the "more generally" part of Saks' Theorem $9.7+$. Nevertheless it is easy to verify the statement obtained from Theorem 4.10 by deleting the hypothesis " $\phi(B)<\infty$ " and replacing it by "each bounded set has finite ϕ measure."

Remark 4.13. Herein we give a supplementary example which serves much the same purpose as the one just discussed in 4.12. Let S be the plane metrized in the customary manner. Introduce F, G, and R as in 4.12. Let B be those points in the plane whose first coordinates are rational. Let ϕ so measure S that

$$
\phi(\beta)=\text { the Carathéodory }{ }^{9} \text { linear measure of } \beta B
$$

whenever $\beta \subset S$. Note that $\phi(B)=\phi(S)=\infty$ but that S is a countable sum of Borel sets of finite ϕ measure. Note also (cf. 4.12) that each countable subset of S has ϕ measure zero. However, within the Borel set B, it is impossible to find a G_{δ} set C for which $\phi(B-C)<\infty$. To see this use the fact that the projection upon the y axis of any subset α of B has a Lebesgue measure which does not exceed $\phi(\alpha)$, and then recall the reasoning employed in 4.12.

University of California

[^4]
[^0]: Received by the editors November 15, 1943.
 ${ }^{1}$ A. P. Morse and J. F. Randolph, The ϕ rectifiable subsets of the plane, Trans. Amer. Math. Soc. vol. 55 (1944) pp. 236-305, Theorem 3.7 together with the remarks which follow Theorem 3.4.
 ${ }^{2}$ H. Hahn, Über die Multiplikation total-additiver Mengenfunktionen, Annali della R. Scuola Normale Superiore Pisa (2) vol. 2 (1933) p. 437.
 ${ }^{8}$ S. Saks, Theory of the integral, Warsaw, 1937, p. 85.
 ${ }^{4}$ Since an open set is an $R_{\text {r }}$.

[^1]: ${ }^{6}$ This is a corollary of a theorem proved by W. Sierpinski in his Les ensembles boreliens abstraits, Annales de la Société polonaise de mathématique vol. 6 (1927) p. 51.
 ${ }^{6}$ C. Caratheodory, Über das lineare mass von Punktmengen, Nachr. Ges. Wiss. Göttingen (1914) p. 406.

[^2]: ${ }^{7}$ Those measure theoretic results of which we assume a previous knowledge are in H. Hahn, Theorie der reellen Funktionen, vol. 1, Berlin, 1921, pp. 424-427.

[^3]: ${ }^{8}$ H. Hahn, Theorie der reellen Funktionen, vol. 1, Berlin, 1921, p. 447, Theorem IV.

[^4]: ${ }^{\circ}$ C. Carathéodory, op. cit., pp. 420 ff.

