THE EQUATION x' = xd - dx = b

N. JACOBSON

Let \mathfrak{A} be an associative algebra with a possibly infinite basis over a field Φ . Then if d is a fixed element in \mathfrak{A} , it is well known that the mapping $x \rightarrow x' \equiv [x, d] = xd - dx$ is a derivation in \mathfrak{A} ; that is,

$$(x + y)' = x' + y',$$
 $(x\alpha)' = x'\alpha,$ $(xy)' = x'y + xy'$

for all x, y in $\mathfrak A$ and all α in Φ . The constants relative to such a derivation are the elements of \mathfrak{A} that commute with d. We shall call an element b a d-integral if b=a' for some element a in \mathfrak{A} , that is, if the equation x' = xd - dx = b has a solution in \mathfrak{A} . Clearly if a is a solution of this equation then the totality of solutions is the set $\{a+c\}$ where c ranges over the set of d-constants. In a recent paper appearing in this Bulletin, R. E. Johnson obtained a necessary and sufficient condition that an element b be a d-integral under the assumption that $\mathfrak A$ is a separable algebraic division ring.2 In this note we allow A to be an arbitrary algebra but we make the assumption that d is an algebraic element in the sense that it satisfies a polynomial equation with coefficients in Φ . We obtain a necessary condition, which is equivalent to Johnson's condition when $\mathfrak A$ is a division ring, that b be a d-integral. If the minimum polynomial $\mu(\lambda)$ of d is relatively prime to its derivative $\mu'(\lambda)$, then it is easy to see that the condition is also sufficient and one may give an explicit formula for a solution of the equation x' = b. If we assume that \mathfrak{A} is a simple algebra satisfying the descending chain condition for left ideals then we can show that our condition is also sufficient when $\mu(\lambda)$ is a product of distinct irreducible factors in $\Phi[\lambda]$ and in certain other cases. Here, however, we do not display a solution but merely prove its existence. Our results include, of course, Johnson's result for algebraic division rings, since the minimum polynomial of an element in such a ring is irreducible. No assumption about separability is required.

In order to obtain a condition for the solvability of the equation x'=b we consider the matrices

(1)
$$u = \begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix}, \qquad v = \begin{pmatrix} d & b \\ 0 & d \end{pmatrix}$$

Received by the editors May 19, 1944.

¹ Cf. the author's paper Abstract derivation and Lie algebras, Trans. Amer. Math. Soc. vol. 42 (1937) pp. 206-224.

² On the equation $\chi \alpha = \gamma \chi + \beta$ over an algebraic division ring, Bull. Amer. Math. Soc. vol. 50 (1944) pp. 202-208.

in the matrix algebra \mathfrak{A}_2 of two-rowed matrices with elements in \mathfrak{A} . If x is any element in \mathfrak{A}

$$\begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}^{-1}$$

and the equation x' = xd - dx = b is equivalent to the matrix equation

Thus if b is a d-integral the matrices (1) are similar in \mathfrak{A}_2 . We suppose now that d is an algebraic element and let

(3)
$$\phi(\lambda) = \lambda^m + \alpha_1 \lambda^{m-1} + \cdots$$

be the minimum polynomial of d over Φ . Then it is clear that $\phi(u) = 0$. Hence a necessary condition that b be a d-integral is that $\phi(v) = 0$. Now

$$v^r = \begin{pmatrix} d^r & B_r \\ 0 & d^r \end{pmatrix}$$

where $B_r = \sum_{k=0}^{r-1} d^k b d^{r-k-1}$. Hence the condition that $\phi(v) = 0$ is that

(4)
$$B_m + \alpha_1 B_{m-1} + \cdots + \alpha_{m-1} B_1 = 0.$$

As we have shown elsewhere⁸

$$B_r = C_{r,1}d^{r-1}b + C_{r,2}d^{r-2}b' + \cdots + b^{(r-1)}$$

where $b^{(k)} = (b^{(k-1)})'$. Hence if we define

$$\phi_h(\lambda) = C_{m,h}\lambda^{m-h} + C_{m-1,h}\alpha_1\lambda^{m-h-1} + \cdots \equiv \phi^{(h)}(\lambda)/h!$$

we may write (4) in the more useful form

(5)
$$\phi_1(d)b + \phi_2(d)b' + \cdots + \phi_m(d)b^{(m-1)} = 0.$$

We suppose now that $\phi_1(\lambda) \equiv \phi'(\lambda)$ is relatively prime to $\phi(\lambda)$. Then $\phi_1(d)$ is a regular element in \mathfrak{A} . Hence if b is an element such that (5) holds,

$$b = -\phi_1(d)^{-1}\phi_2(d)b' - \cdots - \phi_1(d)^{-1}\phi_m(d)b^{(m-1)} = x'$$

where

(6)
$$x = -\phi_1(d)^{-1}\phi_2(d)b - \cdots - \phi_1(d)^{-1}\phi_m(d)b^{(m-2)}.$$

⁸ Loc. cit. footnote 1, p. 209.

⁴ This condition will be satisfied if d generates a separable algebraic field over Φ .

This proves the following theorem.

THEOREM 1. Let $\mathfrak A$ be an arbitrary algebra and let d be an algebraic element of $\mathfrak A$ having a minimum polynomial $\phi(\lambda)$ relatively prime to its derivative. Then (5) is a necessary and sufficient condition in order that the element b be a d-integral. When the condition holds, b=x' where x is given by (6).

We suppose now that $\mathfrak A$ is a simple algebra with an identity satisfying the descending chain condition for left (right) ideals. Then $\mathfrak A=\mathfrak D_h$, a matrix algebra of h rows over the (not necessarily finite) division algebra $\mathfrak D$ and conversely any algebra of this form satisfies our condition. As before let d be an algebraic element of $\mathfrak A$ and let $\phi(\lambda)$ be its minimum polynomial. Let b be an element of $\mathfrak A$ such that (5) holds. Then (4) holds and hence the minimum polynomial of v as well as of u is $\phi(\lambda)$. Since d, $b \in \mathfrak A = \mathfrak D_h$ the matrices u and $v \in \mathfrak D_{2h}$ and these may be regarded as the matrices of linear transformations in a 2h-dimensional vector space $\mathfrak A$ over $\mathfrak D$. Let T be the linear transformation corresponding to v. Then according to the form of v we have an h-dimensional subspace $\mathfrak S$ of $\mathfrak A$ invariant under T such that the matrix of T in $\mathfrak S$ is d and the matrix of T in the difference space $\mathfrak A - \mathfrak S$ is also d.

We suppose now that $\phi(\lambda)$ is a product of irreducible factors in $\Phi[\lambda]$. In this case the linear transformation is completely reducible. Hence there exists a subspace \mathfrak{S}' invariant under T such that $\mathfrak{R} = \mathfrak{S} + \mathfrak{S}'$, $\mathfrak{S} \cap \mathfrak{S}' = 0$ and such that the matrix of T in \mathfrak{S}' is also d. Let $x_1, \dots, x_h, x_{h+1}, \dots, x_{2h}$ be the original basis of \mathfrak{R} relative to which T has the matrix v so that x_1, \dots, x_h is a basis for \mathfrak{S} . Corresponding to the decomposition $\mathfrak{R} = \mathfrak{S} + \mathfrak{S}'$ we have the basis $x_1, \dots, x_h, x_{h+1}', \dots, x_{2h}'$. The matrix relating this basis to the original one has the form

$$\begin{pmatrix} 1 & p \\ 0 & q \end{pmatrix}$$
,

where p, $q \in \mathfrak{D}_h$ and the matrix of T relative to the basis x_1, \dots, x_h , x'_{h+1}, \dots, x'_{2h} is u. Hence we have the equation

$$\begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix} = \begin{pmatrix} 1 & p \\ 0 & q \end{pmatrix}^{-1} \begin{pmatrix} d & b \\ 0 & d \end{pmatrix} \begin{pmatrix} 1 & p \\ 0 & q \end{pmatrix}.$$

This implies that dq = qd and that bq = pd - dp. Since the matrix

⁵ See the author's paper *Pseudo-linear transformations*, Ann. of Math. vol. 38 (1937) p. 498.

$$\begin{pmatrix} 1 & p \\ 0 & q \end{pmatrix}$$

is regular, q is regular and hence we have the relation b = xd - dx where $x = pq^{-1}$.

THEOREM 2. Let $\mathfrak{A} = \mathfrak{D}_h$ where \mathfrak{D} is a division algebra over Φ and let d be an algebraic element of \mathfrak{A} . Then if the minimum polynomial $\phi(\lambda)$ of d is a product of distinct irreducible factors in $\Phi[\lambda]$, the condition (5) is necessary and sufficient in order that the element b of \mathfrak{A} be a d-integral.

We next let $\mathfrak{A} = \Phi_h$, the matrix algebra of h rows over Φ . Let d be a non-derogatory matrix in Φ_h . Thus d has only one invariant factor $\phi(\lambda) \neq 1$ and $\phi(\lambda)$ is the minimum polynomial of d. Let b be a matrix such that (5) holds and consider the matrix v as before. The minimum polynomial of v is $\phi(\lambda)$. If T is the linear transformation in the 2h-dimensional space over Φ associated with the matrix v then \Re contains an invariant subspace $\mathfrak S$ whose matrix is d. Since d is non-derogatory, $\mathfrak S$ is a cyclic subspace and its order is the minimum polynomial of T in $\mathfrak R$. Now it is known that this implies that $\mathfrak R = \mathfrak S + \mathfrak S'$, $\mathfrak S \cap \mathfrak S' = 0$ where $\mathfrak S'$ is also invariant relative to T. A repetition of the argument used to prove Theorem 2 will now yield the following theorem.

THEOREM 3. Let d be a non-derogatory matrix in the matrix algebra Φ_h and let $\phi(\lambda)$ be its minimum polynomial. Then the condition (5) is necessary and sufficient that the matrix b be a d-integral.

We give finally an example in which the condition (5) is not sufficient to insure that an element be a d-integral. Let

$$d = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad b = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then the minimum polynomial of d is $\phi(\lambda) = \lambda^2$. Since bd = db = 0, b satisfies (5). On the other hand, the invariant factors of the matrices u and v here are respectively λ^2 , λ^2 , λ , λ and λ^2 , λ^2 , λ^2 . It follows that these matrices are not similar and hence b is not a d-integral.

THE JOHNS HOPKINS UNIVERSITY

⁶ See van der Waerden's *Moderne Algebra*, vol. 2, pp. 129–130. The proof given there of this theorem for ordinary finite groups is also valid for vector spaces relative to a single linear transformation.