THE EQUATION «'=xd—dx=b

N. JACOBSON

Let A be an associative algebra with a possibly infinite basis over
a field ®. Then if d is a fixed element in ¥, it is well known that the
mapping x—x’ =[x, d] =xd —dx is a derivation! in ¥; that is,

(x+9)' =o' +y, (22 =2 (29) =2"y+ xy

for all x, y in A and all @ in ®. The constants relative to such a deriva-
tion are the elements of A that commute with d. We shall call an ele-
ment b a d-integral if b=a’ for some element ¢ in ¥, that is, if the
equation x’ =xd —dx => has a solution in . Clearly if ¢ is a solution
of this equation then the totality of solutions is the set {a+c} where
¢ ranges over the set of d-constants. In a recent paper appearing in
this Bulletin, R. E. Johnson obtained a necessary and sufficient con-
dition that an element b be a d-integral under the assumption that ¥
is a separable algebraic division ring.? In this note we allow % to be
an arbitrary algebra but we make the assumption that d is an alge-
braic element in the sense that it satisfies a polynomial equation with
coefficients in ®. We obtain a necessary condition, which is equiva-
lent to Johnson’s condition when ¥ is a division ring, that & be a
d-integral. If the minimum polynomial u(\) of d is relatively prime
to its derivative u’(N), then it is easy to see that the condition is also
sufficient and one may give an explicit formula for a solution of the
equation x’ =b. If we assume that ¥ is a simple algebra satisfying the
descending chain condition for left ideals then we can show that our
condition is also sufficient when u()) is a product of distinct irreduci-
ble factors in ®[\] and in certain other cases. Here, however, we do
not display a solution but merely prove its existence. Our results in-
clude, of course, Johnson’s result for algebraic division rings, since
the minimum polynomial of an element in such a ring is irreducible.
No assumption about separability is required.

In order to obtain a condition for the solvability of the equation
x'=b we consider the matrices
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1 Cf. the author's paper Abstract derivation and Lie algebras, Trans. Amer. Math.
Soc. vol. 42 (1937) pp. 206-224.

2 On the equation x o= vx-+B over an algebraic division ring, Bull. Amer. Math. Soc.
vol. 50 (1944) pp. 202-208.
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in the matrix algebra U, of two-rowed matrices with elements in 9,
If x is any element in U

66

and the equation x’ =xd —dx =b is equivalent to the matrix equation

1 a2\ /d 0\ /1 x\! db
@ (00661 -G)
01/\0d/\01 0d
Thus if b is a d-integral the matrices (1) are similar in %;. We suppose
now that d is an algebraic element and let
3 o) = A"+ apm™i4 .-

be the minimum polynomial of d over ®. Then it is clear that ¢(%) =0.
Hence a necessary condition that b be a d-integral is that ¢(v) =0.

( )
" =
0 d

where B, =) ;=id*bd™*-1, Hence the condition that ¢(v) =0 is that
(4) Bn+ a1Bpy+ ¢+ + + am1B; = 0.
As we have shown elsewhere?

B, = Cr18™ % + Cy0d™%" 4 + -+ + b—D
where b® = (b*-D)’, Hence if we define

&1(\) = CmsA™ P 4 Coup N1 4 -+« = W (N) /B!

we may write (4) in the more useful form
(5) 61(d)b + 2(A) + - - - + Sm(@)d¢mD = 0.

We suppose now that ¢:(\)=¢’(\) is relatively prime to ¢(\).4
Then ¢1(d) is a regular element in %. Hence if b is an element such
that (5) holds,

b= = G = - -+ — S1(@)pm( DD = o
where

(6) 2= — ¢1(d)7ga(d)b — * -+ — $1(d)"'m(d)b ™Y,

3 Loc. cit. footnote 1, p. 209,
¢ This condition will be satisfied if d generates a separable algebraic field over ®.
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This proves the following theorem.

THEOREM 1. Let A be an arbitrary algebra and let d be an algebraic
element of N having a minimum polynomial ¢(N) relatively prime to its
derivative. Then (5) is a necessary and sufficient condition in order that
the element b be o d-integral. When the condition holds, b=x' where x
is given by (6).

We suppose now that ¥ is a simple algebra with an identity satis-
fying the descending chain condition for left (right) ideals. Then
A=D;, a matrix algebra of & rows over the (not necessarily finite)
division algebra ® and conversely any algebra of this form satisfies
our condition. As before let d be an algebraic element of % and let
¢(\) be its minimum polynomial. Let b be an element of A such that
(5) holds. Then (4) holds and hence the minimum polynomial of v
as well as of # is ¢(N). Since d, bEA=D; the matrices # and vEDqn
and these may be regarded as the matrices of linear transformations
in a 2h-dimensional vector space R over D. Let T be the linear trans-
formation corresponding to v. Then according to the form of v we
have an h-dimensional subspace © of R invariant under T such that
the matrix of T in & is d and the matrix of T in the difference space
RN—& is also d.

We suppose now that ¢(\) is a product of irreducible factors in
®|[\]. In this case the linear transformation is completely reducible.b
Hence there exists a subspace &’ invariant under T such that
R=64+6&’, @8NS’ =0 and such that the matrix of T in &’ is also d.
Let x4, - + -+, Xn, Xn41, * * *, %21 be the original basis of R relative
to which T has the matrix 9 so that %, - - -, %3 is a basis for &.
Corresponding to the decomposition =& +&’ we have the basis
X1, * ¢ ¢ Xn XH+1, ¢ * * » X3 The matrix relating this basis to the origi-
nal one has the form

o
0 q)’

where p, ¢ED; and the matrix of T relative to the basis %y, - - -, X4,
XH41, * * + , %o is . Hence we have the equation

()= o))

This implies that dg =g¢d and that bg=pd —dp. Since the matrix

5 See the author’s paper Pseudo-linear transformations, Ann. of Math. vol. 38
(1937) p. 498.
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(%)

is regular, ¢ is regular and hence we have the relation b=xd —dx
where x =pg~1.

THEOREM 2. Let A=, where D is a division algebra over P and
let d be an algebraic element of N. Then if the minimum polynomial
o (\) of d is a product of distinct irreducible factors in ®[N], the condition
(5) is necessary and sufficient in order that the element b of N be a
d-integral.

We next let % =®;, the matrix algebra of & rows over ®. Let d
be a non-derogatory matrix in ®;. Thus d has only one invariant fac-
tor (N\) =1 and ¢(\) is the minimum polynomial of d. Let b be a
matrix such that (5) holds and consider the matrix v as before. The
minimum polynomial of v is (N). If T is the linear transformation in
the 2k-dimensional space over ® associated with the matrix » then R
contains an invariant subspace © whose matrix is d. Since d is non-
derogatory, & is a cyclic subspace and its order is the minimum poly-
nomial of T in R. Now it is known that this implies that R=S+&’,
©N&’ =0 where &’ is also invariant relative to T.% A repetition of
the argument used to prove Theorem 2 will now yield the following
theorem.

THEOREM 3. Let d be a non-derogatory matrix in the matrix algebra
D, and let p(\) be its minimum polynomial. Then the condition (5) is
necessary and sufficient that the matrix b be a d-integral.

We give finally an example in which the condition (5) is not suffi-
cient to insure that an element be a d-integral. Let

010 0 00
d={0 0 0]}, b={0 0 O
000 0 01

Then the minimum polynomial of d is ¢(A\) =\2. Since bd =db=0,
b satisfies (5). On the other hand, the invariant factors of the matrices
u and v here are respectively A2, A2, \, N and A2, A2, N2 It follows that
these matrices are not similar and hence b is riot a d-integral.
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8 See van der Waerden's Moderne Algebra, vol. 2, pp. 129-130. The proof given
there of this theorem for ordinary finite groups is also valid for vector spaces relative
to a single linear transformation.



